Photo AI
Question 7
Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A. Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + 6 sin θ -... show full transcript
Step 1
Answer
To prove this, start with the identity for cosine:
egin{align*} ext{cos}(2A) &= ext{cos}(A + A) \ &= ext{cos} A ext{cos} A - ext{sin} A ext{sin} A \ &= ext{cos}^2 A - ext{sin}^2 A \ \ &= 1 - ext{sin}^2 A - ext{sin}^2 A \ &= 1 - 2 ext{sin}^2 A. ext{This completes the proof.} \end{align*}Step 2
Answer
We start with the left-hand side:
egin{align*} 2 ext{sin}(2 heta) - 3 ext{cos}(2 heta) - 3 ext{sin} heta + 3 &= 2(2 ext{sin} heta ext{cos} heta) - 3(1 - 2 ext{sin}^2 heta) - 3 ext{sin} heta + 3 \ &= 4 ext{sin} heta ext{cos} heta - 3 + 6 ext{sin}^2 heta - 3 ext{sin} heta + 3 \ &= 4 ext{sin} heta ext{cos} heta + 6 ext{sin}^2 heta - 3 ext{sin} heta.\ \ ext{Factor out } ext{sin} heta: \ &= ext{sin} heta(4 ext{cos} heta + 6 ext{sin} heta - 3). ext{This establishes the equality.} \end{align*}Step 3
Answer
To express this in the required form, we start by determining R and α:
Step 4
Answer
From the previous steps, we have:
2 ext{sin}(2 heta) = rac{3}{2}( ext{cos}(2 heta) + ext{sin} heta - 1).
Using numerical methods or graphing techniques, we find:
Report Improved Results
Recommend to friends
Students Supported
Questions answered