Photo AI
Question 18
With respect to a fixed origin O, the lines \( l_1 \) and \( l_2 \) are given by the equations \( l_1 : r = (9i + 13j - 3k) + \lambda (2i + 4j - 2k) \) \( l_2 : r... show full transcript
Step 1
Answer
To find the point of intersection, we set the vector equations of ( l_1 ) and ( l_2 ) equal to each other:
[ (9i + 13j - 3k) + \lambda (2i + 4j - 2k) = (2i - j + k) + \mu(2i + j + k) ]
Expanding both sides:
[ (9 + 2\lambda)i + (13 + 4\lambda)j + (-3 - 2\lambda)k = (2 + 2\mu)i + (-1 + \mu)j + (1 + \mu)k ]
Setting the coefficients equal gives us three equations:
From these equations, we can solve for ( \lambda ) and ( \mu ).
Solving equations (1) and (2):
From (1): [ 2\lambda - 2\mu = -7 \quad (1) ]
From (2): [ 4\lambda - \mu = -14 \quad (2) ]
Multiplying (1) by 2: [ 4\lambda - 4\mu = -14 \quad (3) ]
Subtracting (2) from (3): [ 4\mu = -7 \implies \mu = \frac{7}{4} ]
Substituting ( \mu ) back into (1) gives:
[ 2\lambda - 2\left(\frac{7}{4}\right) = -7 ]
[ 2\lambda - \frac{14}{4} = -7 \implies 2\lambda = -\frac{14}{4} + 7 = \frac{14 - 14}{4} = 0 \implies \lambda = 0 ]
Substituting ( \lambda ) and ( \mu ) into either equation to find the intersection:
[ r = (9i + 13j - 3k) + 0(2i + 4j - 2k) = (9, 13, -3) ]
Thus, the position vector at the point of intersection is ( \mathbf{r} = 9i + 13j - 3k ).
Step 2
Answer
To find the angle ( \theta ) between the two lines, we can use the direction vectors of the lines. The direction vector of ( l_1 ) is ( (2i + 4j - 2k) ) and of ( l_2 ) is ( (2i + j + k) ).
We calculate the cosine of the angle using the dot product formula:
[ \cos \theta = \frac{a \cdot b}{|a||b|} ]
where:
Calculating the dot product: [ a \cdot b = 2 \cdot 2 + 4 \cdot 1 + (-2) \cdot 1 = 4 + 4 - 2 = 6 ]
Now we find the magnitudes: [ |a| = \sqrt{2^2 + 4^2 + (-2)^2} = \sqrt{4 + 16 + 4} = \sqrt{24} = 2\sqrt{6} ] [ |b| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} ]
Now substituting: [ \cos \theta = \frac{6}{(2\sqrt{6})(\sqrt{6})} = \frac{6}{12} = \frac{1}{2} ]
So, ( \theta = \cos^{-1}\left(\frac{1}{2}\right) = 60 \text{ degrees} ).
Step 3
Answer
Let ( P = (9 + 2\lambda)i + (13 + 4\lambda)j + (-3 - 2\lambda)k ) for some scalar ( \lambda ). The vector from A to P is: [ \overrightarrow{AP} = P - A = ((9 + 2\lambda) - 4)i + ((13 + 4\lambda) - 16)j + ((-3 - 2\lambda) + 3)k ] [ = (5 + 2\lambda)i + (-3 + 4\lambda)j + (-2\lambda)k ]
Since ( AP ) is perpendicular to ( l_1 ), their dot product must be zero: [ (5 + 2\lambda)(2) + (-3 + 4\lambda)(4) + (-2\lambda)(-2) = 0 ]
Expanding gives: [ 10 + 4\lambda - 12 + 16\lambda + 4\lambda = 0 ] [ 24\lambda - 2 = 0 \implies 24\lambda = 2 \implies \lambda = \frac{1}{12} ]
Now substituting ( \lambda ) back into the expression for P: [ P = (9 + 2(\frac{1}{12}))i + (13 + 4(\frac{1}{12}))j + (-3 - 2(\frac{1}{12}))k ] [ = (9 + \frac{1}{6})i + (13 + \frac{1}{3})j + (-3 - \frac{1}{6})k ] [ = \left(\frac{54}{6} + \frac{1}{6}\right)i + \left(\frac{39}{3} + \frac{1}{3}\right)j + \left(-\frac{18}{6} - \frac{1}{6}\right)k ] [ = \frac{55}{6}i + \frac{40}{3}j - \frac{19}{6}k ]
Thus, the exact coordinates of P are ( P = \left(\frac{55}{6}, \frac{40}{3}, -\frac{19}{6}\right) ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered