Photo AI

6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 5

Question icon

Question 8

6.-(a)-Express-$3-\sin-x-+-2-\cos-x$-in-the-form-$R-\sin(x-+-\alpha)$-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 8-2007-Paper 5.png

6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. (b) Hence find the greatest value of $(3 \si... show full transcript

Worked Solution & Example Answer:6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 5

Step 1

Solve, for $0 < x < 2\pi$, the equation $3 \sin x + 2 \cos x = 1$

96%

114 rated

Answer

To solve the equation 3sinx+2cosx=13 \sin x + 2 \cos x = 1, we rewrite it using the expression in part (a):

13sin(x+α)=1\sqrt{13} \sin(x + \alpha) = 1

Dividing both sides by 13\sqrt{13}:

sin(x+α)=113\sin(x + \alpha) = \frac{1}{\sqrt{13}}

Using the inverse sine function gives us:

x+α=arcsin(113)+2nπx + \alpha = \arcsin\left(\frac{1}{\sqrt{13}}\right) + 2n\pi

and

x+α=πarcsin(113)+2nπx + \alpha = \pi - \arcsin\left(\frac{1}{\sqrt{13}}\right) + 2n\pi

from which we can solve for xx:

For 0<x<2π0 < x < 2\pi, let's calculate α\alpha:

$$\alpha \approx \tan^{-1}\left(\frac{2}{3}\right) \approx 0.588.$

Therefore, substituting back in:

  1. For the first case:

x=arcsin(113)0.588x = \arcsin\left(\frac{1}{\sqrt{13}}\right) - 0.588

  1. For the second case:

x=πarcsin(113)0.588x = \pi - \arcsin\left(\frac{1}{\sqrt{13}}\right) - 0.588

Calculating these values gives:

  1. Approximating arcsin(113)0.281.\arcsin\left(\frac{1}{\sqrt{13}}\right) \approx 0.281. Thus: x0.2810.588=0.307 (not valid, discard)x \approx 0.281 - 0.588 = -0.307 \text{ (not valid, discard)}

  2. Then for the second case:
    xπ0.2810.5883.3.x \approx \pi - 0.281 - 0.588 \approx 3.3.

Continuing the checks within 2π2\pi:
We also consider x3.3+2π6.64x \approx 3.3 + 2\pi\approx 6.64, which also needs validation.

Final valid answers for 0<x<2π0 < x < 2\pi rounded to 3 decimal places are thus:

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;