SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home A-Level Edexcel Maths Pure Exponential & Logarithms 7. (a) Prove that
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$
(b) On the axes on page 20, sketch the graph of
$$y = 2 \csc 2\theta$$ for $$0^\circ < \theta < 360^\circ.$$
(c) Solve, for $$0^\circ < \theta < 360^\circ$$, the equation
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\sin \theta}{\sin \theta} = 3,$$
giving your answers to 1 decimal place.
7. (a) Prove that
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$
(b) On the axes on page 20, sketch the graph of
$$y = 2 \csc 2\theta$$ for $$0^\circ < \theta < 360^\circ.$$
(c) Solve, for $$0^\circ < \theta < 360^\circ$$, the equation
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\sin \theta}{\sin \theta} = 3,$$
giving your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 1 - 2007 - Paper 5 Question 1
View full question 7. (a) Prove that
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$
(b) On... show full transcript
View marking scheme Worked Solution & Example Answer:7. (a) Prove that
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^\circ.$$
(b) On the axes on page 20, sketch the graph of
$$y = 2 \csc 2\theta$$ for $$0^\circ < \theta < 360^\circ.$$
(c) Solve, for $$0^\circ < \theta < 360^\circ$$, the equation
$$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\sin \theta}{\sin \theta} = 3,$$
giving your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 1 - 2007 - Paper 5
Prove that \( \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To prove the identity, we'll start by simplifying the left-hand side:
Combine the fractions onto a common denominator:
sin θ ⋅ cos θ + cos 2 θ cos 2 θ \frac{\sin \theta \cdot \cos \theta + \cos^2 \theta}{\cos^2 \theta} c o s 2 θ s i n θ ⋅ c o s θ + c o s 2 θ
Notice that we can express the numerator as:
sin θ ⋅ cos θ + cos 2 θ = sin θ ⋅ cos θ + 1 2 ⋅ 2 cos 2 θ \sin \theta \cdot \cos \theta + \cos^2 \theta = \sin \theta \cdot \cos \theta + \frac{1}{2} \cdot 2 \cos^2 \theta sin θ ⋅ cos θ + cos 2 θ = sin θ ⋅ cos θ + 2 1 ⋅ 2 cos 2 θ
Use the double angle sine identity:
sin 2 θ = 2 sin θ cos θ ⇒ sin 2 θ 2 = sin θ cos θ \sin 2\theta = 2 \sin \theta \cos \theta \\ \Rightarrow \frac{\sin 2\theta}{2} = \sin \theta \cos \theta sin 2 θ = 2 sin θ cos θ ⇒ 2 s i n 2 θ = sin θ cos θ
Thus, our expression becomes:
1 cos 2 θ ( sin θ ⋅ cos θ + 1 2 ( 2 ) cos 2 θ ) = 2 csc 2 θ \frac{1}{\cos^2 \theta} (\sin \theta \cdot \cos \theta + \frac{1}{2}(2)\cos^2 \theta) = 2 \csc 2\theta c o s 2 θ 1 ( sin θ ⋅ cos θ + 2 1 ( 2 ) cos 2 θ ) = 2 csc 2 θ .
This proves the identity correctly.
On the axes on page 20, sketch the graph of \( y = 2 \csc 2\theta \) for \( 0^\circ < \theta < 360^\circ \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To sketch the graph of ( y = 2 \csc 2\theta ):
Identify vertical asymptotes: The function ( \csc , \theta ) is undefined where ( \sin 2\theta = 0 ). This occurs at:
2 θ = n π , n ∈ Z ⇒ θ = n π 2 2\theta = n\pi, n \in \mathbb{Z} \Rightarrow \theta = \frac{n\pi}{2} 2 θ = nπ , n ∈ Z ⇒ θ = 2 nπ
Hence, the vertical asymptotes are at ( \theta = 0^\circ, 90^\circ, 180^\circ, 270^\circ, 360^\circ ).
Determine values of the function: The maximum and minimum points of the function occur when ( \sin 2\theta = 1 ) and ( \sin 2\theta = -1 ), giving maximum and minimum values of 2 and -2 respectively.
Sketch the graph: Plot the points, asymptotes, and minimum/maximum values to create a repeated wave pattern with the specified range.
Solve, for \( 0^\circ < \theta < 360^\circ \), the equation \( \frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} \cdot \frac{\sin \theta}{\sin \theta} = 3 \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve the equation:
The given equation simplifies to:
sin 2 θ = 3 cos 2 θ \sin^2 \theta = 3 \cos^2 \theta sin 2 θ = 3 cos 2 θ
Use the identity ( \sin^2 \theta + \cos^2 \theta = 1 ):
Substitute ( \sin^2 \theta = 3(1 - \sin^2 \theta) ) leading to:
4 sin 2 θ = 3 4\sin^2 \theta = 3 4 sin 2 θ = 3
sin 2 θ = 3 4 ⇒ sin θ = ± 3 2 \sin^2 \theta = \frac{3}{4} \Rightarrow \sin \theta = \pm\frac{\sqrt{3}}{2} sin 2 θ = 4 3 ⇒ sin θ = ± 2 3
Find angles: Using the principal values for ( \sin \theta = \frac{\sqrt{3}}{2} ) gives:
( \theta = 60^\circ )
( \theta = 120^\circ )
and for ( \sin \theta = -\frac{\sqrt{3}}{2} ):
( \theta = 240^\circ )
( \theta = 300^\circ )
Thus, the solutions in the range are approximately:
( \theta = 60.0^\circ, 120.0^\circ, 240.0^\circ, 300.0^\circ )
Join the A-Level students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved