Photo AI

Given that $y = \frac{\ln(x^{2}+1)}{x}$, find $\frac{dy}{dx}$ - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 2

Question icon

Question 5

Given-that-$y-=-\frac{\ln(x^{2}+1)}{x}$,-find-$\frac{dy}{dx}$-Edexcel-A-Level Maths Pure-Question 5-2010-Paper 2.png

Given that $y = \frac{\ln(x^{2}+1)}{x}$, find $\frac{dy}{dx}$. Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^{2}}$.

Worked Solution & Example Answer:Given that $y = \frac{\ln(x^{2}+1)}{x}$, find $\frac{dy}{dx}$ - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 2

Step 1

Given that $y = \frac{\ln(x^{2}+1)}{x}$, find $\frac{dy}{dx}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we use the quotient rule. Let:

u=ln(x2+1)v=xu = \ln(x^{2}+1)\quad v = x

Thus, we have:

dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^{2}}

Calculating dudx\frac{du}{dx}:

dudx=2xx2+1\frac{du}{dx} = \frac{2x}{x^{2}+1}

Now substituting:

dydx=x2xx2+1ln(x2+1)1x2\frac{dy}{dx} = \frac{x \cdot \frac{2x}{x^{2}+1} - \ln(x^{2}+1) \cdot 1}{x^{2}}

Simplifying gives:

dydx=2x2x2+1ln(x2+1)x2=2x2ln(x2+1)(x2+1)x2(x2+1)\frac{dy}{dx} = \frac{\frac{2x^{2}}{x^{2}+1} - \ln(x^{2}+1)}{x^{2}} = \frac{2x^{2} - \ln(x^{2}+1)(x^{2}+1)}{x^{2}(x^{2}+1)}

Step 2

Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^{2}}$

99%

104 rated

Answer

Starting with x=tanyx = \tan y, differentiating both sides with respect to xx gives:

dxdy=sec2y\frac{dx}{dy} = \sec^{2} y

Now, applying the chain rule:

dydx=1dxdy=1sec2y=cos2y\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^{2} y} = \cos^{2} y

Using the identity sec2y=1+tan2y\sec^{2} y = 1 + \tan^{2} y, we can express:

dydx=11+tan2y\frac{dy}{dx} = \frac{1}{1 + \tan^{2} y}

Substituting back x=tanyx = \tan y gives us:

dydx=11+x2\frac{dy}{dx} = \frac{1}{1 + x^{2}}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;