Starting with x=tany, differentiating both sides with respect to x gives:
dydx=sec2y
Now, applying the chain rule:
dxdy=dydx1=sec2y1=cos2y
Using the identity sec2y=1+tan2y, we can express:
dxdy=1+tan2y1
Substituting back x=tany gives us:
dxdy=1+x21