Photo AI

Figure 1 shows the curve $C$, with equation $y = 6 \, ext{cos} \, x + 2.5 \, ext{sin} \, x$ for $0 \leq x \leq 2\pi$ - Edexcel - A-Level Maths Pure - Question 2 - 2014 - Paper 6

Question icon

Question 2

Figure-1-shows-the-curve-$C$,-with-equation-$y-=-6-\,--ext{cos}-\,-x-+-2.5-\,--ext{sin}-\,-x$-for-$0-\leq-x-\leq-2\pi$-Edexcel-A-Level Maths Pure-Question 2-2014-Paper 6.png

Figure 1 shows the curve $C$, with equation $y = 6 \, ext{cos} \, x + 2.5 \, ext{sin} \, x$ for $0 \leq x \leq 2\pi$. (a) Express $6 \text{cos} \, x + 2.5 \text{s... show full transcript

Worked Solution & Example Answer:Figure 1 shows the curve $C$, with equation $y = 6 \, ext{cos} \, x + 2.5 \, ext{sin} \, x$ for $0 \leq x \leq 2\pi$ - Edexcel - A-Level Maths Pure - Question 2 - 2014 - Paper 6

Step 1

Express $6 \text{cos} \, x + 2.5 \text{sin} \, x$ in the form $R \text{cos} (x - \alpha)$

96%

114 rated

Answer

To express the function in the required form, we start with the general cosine identity:

Rcos(xα)=Rcosαcosx+RsinαsinxR \text{cos}(x - \alpha) = R \text{cos} \alpha \text{cos} x + R \text{sin} \alpha \text{sin} x.

By comparing coefficients, we can set:

  1. Rcosα=6R \text{cos} \alpha = 6
  2. Rsinα=2.5R \text{sin} \alpha = 2.5

We can find RR using the Pythagorean identity:

R=(62+2.52)=36+6.25=42.25=6.5R = \sqrt{(6^2 + 2.5^2)} = \sqrt{36 + 6.25} = \sqrt{42.25} = 6.5.

Next, to find α\alpha, we use:

tanα=sinαcosα=2.56\tan \alpha = \frac{\text{sin} \alpha}{\text{cos} \alpha} = \frac{2.5}{6}.

Calculating this gives:

α=tan1(2.56)0.395.\alpha = \tan^{-1}\left(\frac{2.5}{6}\right) \approx 0.395.

Thus, we express: 6cosx+2.5sinx=6.5cos(x0.395)6 \text{cos} \, x + 2.5 \text{sin} \, x = 6.5 \text{cos}(x - 0.395).

Step 2

Find the coordinates of the points on the graph where the curve $C$ crosses the coordinate axes

99%

104 rated

Answer

To find where the curve crosses the axes, we set y=0y = 0 for the x-axis intercepts:

6cosx+2.5sinx=0.6 \text{cos} \, x + 2.5 \text{sin} \, x = 0.

Using the cosine and sine relationship, we solve for xx. The values of xx when y=0y=0 can be found at the points x=0.0,1.97,3.14,5.10x = 0.0, 1.97, 3.14, 5.10 etc.

For the y-axis intercepts, we determine the value of yy when x=0x = 0:

y=6cos(0)+2.5sin(0)=6.y = 6 \text{cos}(0) + 2.5 \text{sin}(0) = 6.

Thus, the coordinates where the curve crosses are (0,6),(1.97,0),(3.14,0),(5.10,0)(0, 6), (1.97, 0), (3.14, 0), (5.10, 0).

Step 3

the maximum and minimum values of $H$ predicted by the model

96%

101 rated

Answer

The function for HH is given by:

H=12+6cos(2πt52)+2.5sin(2πt52).H = 12 + 6 \text{cos} \left( \frac{2\pi t}{52} \right) + 2.5 \text{sin} \left( \frac{2\pi t}{52} \right).

The maximum value of HH occurs when cos(2πt52)=1\text{cos} \left( \frac{2\pi t}{52} \right) = 1 and sin(2πt52)=1\text{sin} \left( \frac{2\pi t}{52} \right) = 1:

Hmax=12+6(1)+2.5(1)=18.5.H_{max} = 12 + 6(1) + 2.5(1) = 18.5.

The minimum value occurs when cos(2πt52)=1\text{cos} \left( \frac{2\pi t}{52} \right) = -1 and sin(2πt52)=1\text{sin} \left( \frac{2\pi t}{52} \right) = -1:

Hmin=12+6(1)+2.5(1)=5.5.H_{min} = 12 + 6(-1) + 2.5(-1) = 5.5.

Step 4

the values of $t$ when $H = 16$

98%

120 rated

Answer

To find tt when H=16H = 16 we substitute into the equation:

16=12+6cos(2πt52)+2.5sin(2πt52).16 = 12 + 6 \text{cos} \left( \frac{2\pi t}{52} \right) + 2.5 \text{sin} \left( \frac{2\pi t}{52} \right).

Rearranging gives:

4=6cos(2πt52)+2.5sin(2πt52).4 = 6 \text{cos} \left( \frac{2\pi t}{52} \right) + 2.5 \text{sin} \left( \frac{2\pi t}{52} \right).

Next, express this in terms of cosine and sine. This involves solving the trigonometric equation, leading to:

Use values for t=3t = 3 or t=29t = 29 when rounding to the nearest whole numbers.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;