Photo AI

f(x) = 5 \, ext{cos} \, x + 12 \, ext{sin} \, x Given that f(x) = R \, ext{cos}(x - \alpha), \, ext{where} \, R > 0 \, ext{and} \, 0 < \alpha < \frac{\pi}{2} - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 5

Question icon

Question 4

f(x)-=-5-\,--ext{cos}-\,-x-+-12-\,--ext{sin}-\,-x-Given-that-f(x)-=-R-\,--ext{cos}(x---\alpha),-\,--ext{where}-\,-R->-0-\,--ext{and}-\,-0-<-\alpha-<-\frac{\pi}{2}-Edexcel-A-Level Maths Pure-Question 4-2008-Paper 5.png

f(x) = 5 \, ext{cos} \, x + 12 \, ext{sin} \, x Given that f(x) = R \, ext{cos}(x - \alpha), \, ext{where} \, R > 0 \, ext{and} \, 0 < \alpha < \frac{\pi}{2}. ... show full transcript

Worked Solution & Example Answer:f(x) = 5 \, ext{cos} \, x + 12 \, ext{sin} \, x Given that f(x) = R \, ext{cos}(x - \alpha), \, ext{where} \, R > 0 \, ext{and} \, 0 < \alpha < \frac{\pi}{2} - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 5

Step 1

find the value of R and the value of α to 3 decimal places.

96%

114 rated

Answer

To find the values of R and α, we start by equating the functions: R2=52+122R^2 = 5^2 + 12^2 Calculating this, we get: R2=25+144=169R^2 = 25 + 144 = 169 Thus, R=169=13.R = \sqrt{169} = 13.

Next, we need to find α using: tan(α)=125\tan(\alpha) = \frac{12}{5} Calculating α, we find: α=arctan(125)1.176.\alpha = \arctan\left(\frac{12}{5}\right) \approx 1.176.

Step 2

Hence solve the equation 5 cos x + 12 sin x = 6 for 0 ≤ x < 2π.

99%

104 rated

Answer

Starting from the rearranged equation: 5cosx+12sinx6=0.5 \, \text{cos} \, x + 12 \, \text{sin} \, x - 6 = 0. Using the form: cos(xα)=6R=613,\cos(x - \alpha) = \frac{6}{R} = \frac{6}{13}, we find: cos(xα)=613xα=arccos(613)1.091.\cos(x - \alpha) = \frac{6}{13} \, \Rightarrow \, x - \alpha = \arccos\left(\frac{6}{13}\right) \approx 1.091.

Therefore, solving for x, we add α: x1.091+1.1762.267.x \approx 1.091 + 1.176 \approx 2.267.

Step 3

Write down the maximum value of 5 cos x + 12 sin x.

96%

101 rated

Answer

The maximum value of the function 5 cos x + 12 sin x is equal to R, which we calculated earlier: Maximum value=R=13.\text{Maximum value} = R = 13.

Step 4

Find the smallest positive value of x for which this maximum value occurs.

98%

120 rated

Answer

The maximum occurs when: cos(xα)=1orcos(xα)=0.\cos(x - \alpha) = 1 \, \text{or} \, \cos(x - \alpha) = 0.\nThese give us:

  1. xα=0x=α1.176.x - \alpha = 0 \Rightarrow x = \alpha \approx 1.176.

So, the smallest positive value of x for which this maximum occurs is approximately: x1.176.x \approx 1.176.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;