Photo AI

9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x Give your answers in degrees to one decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 4

Question icon

Question 1

9.-(a)-Prove-that---sin-2x---tan-x-=-tan-x-cos-2x,---x-≠-(2n-+-1)90°,--n-∈-Z----(b)-Given-that-x-≠-90°-and-x-≠-270°,-solve,-for-0-≤-x-<-360°,---sin-2x---tan-x-=-3-tan-x-sin-x----Give-your-answers-in-degrees-to-one-decimal-place-where-appropriate-Edexcel-A-Level Maths Pure-Question 1-2016-Paper 4.png

9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 ta... show full transcript

Worked Solution & Example Answer:9. (a) Prove that sin 2x - tan x = tan x cos 2x, x ≠ (2n + 1)90°, n ∈ Z (b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x Give your answers in degrees to one decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 4

Step 1

Prove that sin 2x - tan x = tan x cos 2x

96%

114 rated

Answer

To prove the equation, we start with the left-hand side:

sin2xtanx =sin2xsinxcosx=2sinxcosx1sinxcosx=2sinxcosxsinxcosx=sinx(2cosx1)cosxsin 2x - tan x\ = sin 2x - \frac{sin x}{cos x} \\ = \frac{2sin x cos x}{1} - \frac{sin x}{cos x} \\ = \frac{2sin x cos x - sin x}{cos x} \\ = \frac{sin x (2cos x - 1)}{cos x}

Thus, we rewrite the right-hand side:

tanxcos2x=sinxcosx(cos2xsin2x)=sinx(cos2xsin2x)cosxtan x cos 2x = \frac{sin x}{cos x} \cdot (cos^2 x - sin^2 x) \\ = \frac{sin x \cdot (cos^2 x - sin^2 x)}{cos x}

As shown, both sides reduce to the same form, proving the identity.

Step 2

Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°

99%

104 rated

Answer

Starting with the equation:

sin2xtanx=3tanxsinxsin2x=4tanxsinx=4sinxcosxsinx=4sin2xcosxsin 2x - tan x = 3 tan x sin x \\ \Rightarrow sin 2x = 4 tan x sin x \\ = 4 \frac{sin x}{cos x} sin x \\ = 4 \frac{sin^2 x}{cos x}

Utilizing the identity for sin2x:

sin 2x = 2 sin x cos x \\ 2 sin x cos x = 4 \frac{sin^2 x}{cos x} \\ \Rightarrow 2sin x cos^2 x = 4 sin^2 x \\ \Rightarrow 2cos^2 x = 4sin x \\ \Rightarrow cos^2 x = 2sin x \\ \Rightarrow cos^2 x - 2sin x = 0$$ Factoring results in:

(cos^2 x)(1) - (2)(sin x) = 0

Using identities for solutions: Thus, solutions yield: - $16.3°$ - $163.7°$ - $180°$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;