9. (a) Prove that
sin 2x - tan x = tan x cos 2x,
x ≠ (2n + 1)90°, n ∈ Z
(b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°,
sin 2x - tan x = 3 tan x sin x
Give your answers in degrees to one decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 4
Question 1
9. (a) Prove that
sin 2x - tan x = tan x cos 2x,
x ≠ (2n + 1)90°, n ∈ Z
(b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°,
sin 2x - tan x = 3 ta... show full transcript
Worked Solution & Example Answer:9. (a) Prove that
sin 2x - tan x = tan x cos 2x,
x ≠ (2n + 1)90°, n ∈ Z
(b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°,
sin 2x - tan x = 3 tan x sin x
Give your answers in degrees to one decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 4
Step 1
Prove that sin 2x - tan x = tan x cos 2x
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove the equation, we start with the left-hand side:
sin 2x = 2 sin x cos x \\
2 sin x cos x = 4 \frac{sin^2 x}{cos x} \\
\Rightarrow 2sin x cos^2 x = 4 sin^2 x \\
\Rightarrow 2cos^2 x = 4sin x \\
\Rightarrow cos^2 x = 2sin x \\
\Rightarrow cos^2 x - 2sin x = 0$$
Factoring results in:
(cos^2 x)(1) - (2)(sin x) = 0
Using identities for solutions:
Thus, solutions yield:
- $16.3°$
- $163.7°$
- $180°$