Photo AI
Question 9
7. (a) By writing sec x as \( \frac{1}{\cos x} \), show that \( \frac{d}{dx}(\sec x) = \sec x \tan x \). (3) Given that \( y = e^{3x} \sec 3x \), (b) find \( \frac{... show full transcript
Step 1
Answer
To show that ( \frac{d}{dx}(\sec x) = \sec x \tan x ), we start by rewriting secant:
[ \sec x = \frac{1}{\cos x} ]
Using the quotient rule for differentiation, we have:
[ \frac{dy}{dx} = \frac{(-\sin x)(1)}{\cos^2 x} = -\frac{\sin x}{\cos^2 x} ]
Since ( \sec x = \frac{1}{\cos x} ), we can express the derivative as:
[ \frac{dy}{dx} = -\frac{\sin x}{\cos^2 x} = \sec x \tan x ]
Thus, we have shown that ( \frac{d}{dx}(\sec x) = \sec x \tan x ).
Step 2
Answer
Given ( y = e^{3x} \sec 3x ), we apply the product rule:
Let: [ u = e^{3x} \quad \text{and} \quad v = \sec 3x ]
Then, [ \frac{du}{dx} = 3e^{3x} \quad \text{and} \quad \frac{dv}{dx} = 3\sec 3x \tan 3x ]
Now, using the product rule ( \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} ):
[ \frac{dy}{dx} = e^{3x}(3\sec 3x \tan 3x) + \sec 3x(3e^{3x}) ] [ \frac{dy}{dx} = 3e^{3x} \sec 3x (\tan 3x + 1) ]
Step 3
Answer
To find the turning point, we set ( \frac{dy}{dx} = 0 ):
[ 3e^{3x} \sec 3x (\tan 3x + 1) = 0 ]
Since ( e^{3x} ) and ( \sec 3x ) are never zero, we need ( \tan 3x + 1 = 0 ) which gives:
[ \tan 3x = -1 \quad \Rightarrow \quad 3x = -\frac{\pi}{4} + n\pi ]
For ( x = -\frac{\pi}{12} ), we have:
Plugging ( x = -\frac{\pi}{12} ) back into the equation for ( y ): [ y = e^{-\frac{\pi}{4}} \sec(-\frac{\pi}{4}) \Rightarrow \sec(-\frac{\pi}{4}) = \sqrt{2} ]
Thus: [ a = -\frac{\pi}{12}, , b = e^{-\frac{\pi}{4}} \cdot \sqrt{2} \approx 0.812] and rounding gives ( a \approx -0.196 ) and ( b \approx 0.812 ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered