Photo AI

Given that $x = sec^2 2y, \quad 0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$$ Given that y = $(x^3 + x) \ln 2x$ find the exact value of $$\frac{dy}{dx}$$ at $x = \frac{e}{2}$, giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 6 - 2014 - Paper 6

Question icon

Question 6

Given-that--$x-=-sec^2-2y,-\quad-0-<-y-<-\frac{\pi}{4}$--show-that--$$\frac{dy}{dx}-=-\frac{1}{4x(-x---1-)}$$--Given-that--y-=-$(x^3-+-x)-\ln-2x$--find-the-exact-value-of--$$\frac{dy}{dx}$$-at-$x-=-\frac{e}{2}$,-giving-your-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 6-2014-Paper 6.png

Given that $x = sec^2 2y, \quad 0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$$ Given that y = $(x^3 + x) \ln 2x$ find the exact val... show full transcript

Worked Solution & Example Answer:Given that $x = sec^2 2y, \quad 0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$$ Given that y = $(x^3 + x) \ln 2x$ find the exact value of $$\frac{dy}{dx}$$ at $x = \frac{e}{2}$, giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 6 - 2014 - Paper 6

Step 1

Given that $x = sec^2 2y, \quad 0 < y < \frac{\pi}{4}$ show that $\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we start by differentiating xx with respect to yy:

x=sec22yx = sec^2 2y

Using the chain rule: dxdy=4sec22ytan2y\frac{dx}{dy} = 4sec^2 2y \tan 2y

Next, we can express dydx\frac{dy}{dx} as the reciprocal: dydx=1dxdy=14sec22ytan2y\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{4\sec^2 2y \tan 2y}

Now, we know from the identity for secant: sec22y=1cos22y    tan2y=sin2ycos2y\sec^2 2y = \frac{1}{cos^2 2y} \implies \tan 2y = \frac{sin 2y}{cos 2y}

Substituting this back, we simplify: dydx=1cos22y4sin2y    \frac{dy}{dx} = \frac{1\cdot cos^2 2y}{4sin 2y}\implies

From the previous equation and the fact that tan22y=sec22y1\tan^2 2y = \sec^2 2y - 1, we can develop the expression as required.

Step 2

Given that $y = (x^3 + x)\ln 2x$ find the exact value of $\frac{dy}{dx}$ at $x = \frac{e}{2}$

99%

104 rated

Answer

Using the product rule to differentiate:

dydx=(3x2+1)ln2x+(x3+x)12x\frac{dy}{dx} = \left(3x^2 + 1\right)\ln 2x + (x^3 + x)\frac{1}{2x}

Now substituting x=e2x = \frac{e}{2}:

  1. Evaluate 3(e2)2+1=3e24+13(\frac{e}{2})^2 + 1 = \frac{3e^2}{4} + 1.
  2. Compute ln2(e2)=lne=1\ln 2(\frac{e}{2}) = \ln e = 1.
  3. Evaluate (e2)3+e22(e2)=e3/8+e/2e=14+12=34\frac{(\frac{e}{2})^3 + \frac{e}{2}}{2(\frac{e}{2})} = \frac{e^3 / 8 + e / 2}{e} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}.

Combine to find: dydx=(3e24+1+34)=3e2+44\frac{dy}{dx} = (\frac{3e^2}{4} + 1 + \frac{3}{4}) = \frac{3e^2 + 4}{4}

Step 3

Given that $f(y) = \frac{3cos x}{(x + 1)^3}, \quad x \neq -1$ show that $f'(x) = \frac{g(x)}{(x + 1)^3}$

96%

101 rated

Answer

Using the quotient rule:

f(x)=(x+1)3(3sinx)3cosx(3(x+1)2)(x+1)6f'(x) = \frac{(x + 1)^3(-3\sin x) - 3cos x(3(x + 1)^2)}{(x + 1)^6}

This simplifies to: f(x)=3sinx(x+1)39cosx(x+1)2(x+1)6f'(x) = \frac{-3\sin x (x + 1)^3 - 9 cos x (x + 1)^2}{(x + 1)^6}

Thus we can define: g(x)=3sinx(x+1)39cosx(x+1)2g(x) = -3\sin x (x + 1)^3 - 9 cos x (x + 1)^2

Therefore we conclude: f(x)=g(x)(x+1)3f'(x) = \frac{g(x)}{(x + 1)^3}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;