Photo AI

Given that $\sin^2 \theta + \cos^2 \theta = 1$, show that $1 + \tan^2 \theta = \sec^2 \theta$ - Edexcel - A-Level Maths Pure - Question 3 - 2005 - Paper 5

Question icon

Question 3

Given-that-$\sin^2-\theta-+-\cos^2-\theta-=-1$,-show-that-$1-+-\tan^2-\theta-=-\sec^2-\theta$-Edexcel-A-Level Maths Pure-Question 3-2005-Paper 5.png

Given that $\sin^2 \theta + \cos^2 \theta = 1$, show that $1 + \tan^2 \theta = \sec^2 \theta$. (b) Solve, for $0 \leq \theta < 360^\circ$, the equation $2 \tan^2 \... show full transcript

Worked Solution & Example Answer:Given that $\sin^2 \theta + \cos^2 \theta = 1$, show that $1 + \tan^2 \theta = \sec^2 \theta$ - Edexcel - A-Level Maths Pure - Question 3 - 2005 - Paper 5

Step 1

Given that $\sin^2 \theta + \cos^2 \theta = 1$, show that $1 + \tan^2 \theta = \sec^2 \theta$

96%

114 rated

Answer

To show that 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta, we start by recalling the definitions of tangent and secant:

tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta} and secθ=1cosθ.\sec \theta = \frac{1}{\cos \theta}.

Now, using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we can express tan2θ\tan^2 \theta as:

tan2θ=sin2θcos2θ=1cos2θcos2θ=1cos2θ1.\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} - 1.

So,

1+tan2θ=1+sin2θcos2θ=1+1cos2θcos2θ=1cos2θ=sec2θ.1 + \tan^2 \theta = 1 + \frac{\sin^2 \theta}{\cos^2 \theta} = 1 + \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta.

This shows that (1 + \tan^2 \theta = \sec^2 \theta).

Step 2

Solve, for $0 \leq \theta < 360^\circ$, the equation $2 \tan^2 \theta + \sec \theta = 1$

99%

104 rated

Answer

To solve the equation, we first rewrite it using the identity for secant:

2tan2θ+1cosθ=1.2 \tan^2 \theta + \frac{1}{\cos \theta} = 1.

Multiply through by cosθ\cos \theta:

2tan2θcosθ+1=cosθ.2 \tan^2 \theta \cos \theta + 1 = \cos \theta.

Substituting tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta} gives:

2(sin2θcos2θ)cosθ+1=cosθ.2 \left(\frac{\sin^2 \theta}{\cos^2 \theta}\right) \cos \theta + 1 = \cos \theta.

This simplifies to:

2sin2θ+cos3θcos2θ=0.2 \sin^2 \theta + \cos^3 \theta - \cos^2 \theta = 0.

Next, we can use sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta to rewrite this as:

2(1cos2θ)+(cos3θ)cos2θ=022cos2θ+cos3θcos2θ=0cos3θ3cos2θ+2=0.2(1 - \cos^2 \theta) + (\cos^3 \theta) - \cos^2 \theta = 0 \rightarrow 2 - 2\cos^2 \theta + \cos^3 \theta - \cos^2 \theta = 0 \rightarrow \cos^3 \theta - 3\cos^2 \theta + 2 = 0.

Factoring gives:

(cosθ1)(cos2θ2cosθ2)=0.(\cos \theta - 1)(\cos^2 \theta - 2\cos \theta - 2) = 0.

The first part gives:

cosθ=1    θ=0.\cos \theta = 1 \implies \theta = 0^\circ.

For the quadratic equation cos2θ2cosθ2=0\cos^2 \theta - 2\cos \theta - 2 = 0, we can use the quadratic formula:

cosθ=2±(2)241(2)21=2±4+82=2±122=1±3.\cos \theta = \frac{2 \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2} = 1 \pm \sqrt{3}.

Evaluating this gives:

  1. cosθ=13131.8,\cos \theta = 1 - \sqrt{3} \approx 131.8^\circ,
  2. cosθ=1+3228.2.\cos \theta = 1 + \sqrt{3} \approx 228.2^\circ.

Thus, the final answers within the range are:

θ10,θ2131.8,θ3228.2.\theta_1 \approx 0^\circ, \theta_2 \approx 131.8^\circ, \theta_3 \approx 228.2^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;