Photo AI
Question 1
The point A with coordinates (-3, 7, 2) lies on a line I1 The point B also lies on the line I1 Given that \[ \vec{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} \... show full transcript
Step 1
Answer
To find the coordinates of point B, we can use the given information about point A and vector ( \vec{AB} ).
Let the coordinates of point B be ( (x_B, y_B, z_B) ). Thus, we can express the relationship:
[ \vec{AB} = \vec{OB} - \vec{OA} = \begin{pmatrix} x_B + 3 \ y_B - 7 \ z_B - 2 \end{pmatrix} ]
Setting ( \vec{AB} = \begin{pmatrix} 4 \ -6 \ 2 \end{pmatrix} ), we have:
[ \begin{pmatrix} x_B + 3 \ y_B - 7 \ z_B - 2 \end{pmatrix} = \begin{pmatrix} 4 \ -6 \ 2 \end{pmatrix} ]
From this:
Thus, the coordinates of point B are ( (1, 1, 4) ).
Step 2
Answer
To find the cosine of the angle PAB, we first need the vectors ( \vec{AP} ) and ( \vec{AB} ).
Next, we calculate the dot product:
[ \vec{AP} \cdot \vec{AB} = (12)(4) + (-6)(-6) + (6)(2) = 48 + 36 + 12 = 96 ]
Now, we find the magnitudes of the vectors:
Using the dot product formula: [ \cos(PAB) = \frac{\vec{AP} \cdot \vec{AB}}{||\vec{AP}|| ||\vec{AB}||} = \frac{96}{(6\sqrt{6})(2\sqrt{14})} = \frac{96}{12\sqrt{84}} = \frac{8}{\sqrt{84}} = \frac{4}{\sqrt{21}} ]
Thus, ( \cos(PAB) = \frac{4}{\sqrt{21}} ).
Step 3
Answer
The area of triangle PAB can be found using the formula: [ \text{Area} = \frac{1}{2} ||\vec{AP} \times \vec{AB}|| ]
Calculating the cross product ( \vec{AP} \times \vec{AB} ): [ \vec{AP} = \begin{pmatrix} 12 \ -6 \ 6 \end{pmatrix}, \vec{AB} = \begin{pmatrix} 4 \ -6 \ 2 \end{pmatrix} ]
Using the determinant to find the cross product: [ \vec{AP} \times \vec{AB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ 12 & -6 & 6 \ 4 & -6 & 2 \end{vmatrix} ]
Calculating: [ = \hat{i}((-6)(2) - (6)(-6)) - \hat{j}((12)(2) - (6)(4)) + \hat{k}((12)(-6) - (-6)(4)) ] [ = \hat{i}(-12 + 36) - \hat{j}(24 - 24) + \hat{k}(-72 + 24) ] [ = \hat{i}(24) - \hat{j}(0) + \hat{k}(-48) ]
So, ( \vec{AP} \times \vec{AB} = \begin{pmatrix} 24 \ 0 \ -48 \end{pmatrix} )
Calculating the magnitude: [ ||\vec{AP} \times \vec{AB}|| = \sqrt{24^2 + 0^2 + (-48)^2} = \sqrt{576 + 0 + 2304} = \sqrt{2880} = 12\sqrt{20} = 12*2\sqrt{5} = 24\sqrt{5} ]
Thus, the area is: [ \text{Area} = \frac{1}{2} (24\sqrt{5}) = 12\sqrt{5} ]
Step 4
Answer
Since line I2 passes through point P and is parallel to line I1, we first determine the direction vector of line I1 which is ( \vec{AB} ).
The position vector for point P is ( \vec{P} = \begin{pmatrix} 9 \ 1 \ 8 \end{pmatrix} ).
A vector equation for line I2 can be written as: [ \vec{r} = \vec{P} + t \vec{AB} ]
Substituting the known vectors: [ \vec{r} = \begin{pmatrix} 9 \ 1 \ 8 \end{pmatrix} + t \begin{pmatrix} 4 \ -6 \ 2 \end{pmatrix} ]
Thus, the vector equation for line I2 is: [ \vec{r} = \begin{pmatrix} 9 + 4t \ 1 - 6t \ 8 + 2t \end{pmatrix} ]
Step 5
Answer
Since the line segment AP is perpendicular to the line segment BQ, we need to ensure:
To satisfy the perpendicular condition, we apply the dot product: [ \vec{AP} \cdot \vec{BQ} = 0 ]
Substituting and simplifying gives us the coordinates of Q. Upon solving the system involving the components of both vectors, we ultimately find:
The coordinates of point Q are ( (4, 8.5, 5.5) ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered