Photo AI

y = √(5x + 2) (a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 3 - 2008 - Paper 2

Question icon

Question 3

y-=-√(5x-+-2)--(a)-Complete-the-table-below,-giving-the-values-of-y-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 3-2008-Paper 2.png

y = √(5x + 2) (a) Complete the table below, giving the values of y to 3 decimal places. | x | 0 | 0.5 | 1 | 1.5 | 2 | |-----|-----|-----|-----|-----|-----|... show full transcript

Worked Solution & Example Answer:y = √(5x + 2) (a) Complete the table below, giving the values of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 3 - 2008 - Paper 2

Step 1

Complete the table

96%

114 rated

Answer

To complete the table, we need to calculate the values of y for each corresponding x:

  1. For x = 0:
    y=5(0)+2=21.732y = \sqrt{5(0) + 2} = \sqrt{2} \approx 1.732

  2. For x = 0.5:
    y=5(0.5)+2=2.51.581y = \sqrt{5(0.5) + 2} = \sqrt{2.5} \approx 1.581

  3. For x = 1:
    y=5(1)+2=72.646y = \sqrt{5(1) + 2} = \sqrt{7} \approx 2.646

  4. For x = 1.5:
    y=5(1.5)+2=9.53.082y = \sqrt{5(1.5) + 2} = \sqrt{9.5} \approx 3.082

  5. For x = 2:
    y=5(2)+2=123.464y = \sqrt{5(2) + 2} = \sqrt{12} \approx 3.464

Thus, the completed table is:

x00.511.52
y1.7321.5812.6463.0823.464

Step 2

Use the trapezium rule to find an approximation

99%

104 rated

Answer

To use the trapezium rule for the approximation of

025x+2dx\int_0^2 \sqrt{5x + 2} \, dx, we first note the calculated y values:

  • y(0) = 1.732
  • y(0.5) = 1.581
  • y(1) = 2.646
  • y(1.5) = 3.082
  • y(2) = 3.464

Next, applying the trapezium rule:

abf(x)dxh2(f(a)+2i=1n1f(xi)+f(b))\int_a^b f(x) \, dx \approx \frac{h}{2} \left( f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right)

where:

  • h = 0.5 (the width of each sub-interval),
  • n = total number of intervals = 4.

Applying these values:

025x+2dx0.52(1.732+2(1.581+2.646+3.082)+3.464)0.52(1.732+2(7.309)+3.464)\int_0^2 \sqrt{5x + 2} \, dx \approx \frac{0.5}{2} \left( 1.732 + 2(1.581 + 2.646 + 3.082) + 3.464 \right) \approx \frac{0.5}{2} \left( 1.732 + 2(7.309) + 3.464 \right)

Calculating further:

=0.52(1.732+14.618+3.464)= \frac{0.5}{2} \left( 1.732 + 14.618 + 3.464 \right)
=0.52×19.8140.5×19.8142=4.954= \frac{0.5}{2} \times 19.814 \approx \frac{0.5 \times 19.814}{2} = 4.954

Thus, the approximate value of the integral is 4.954.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;