Photo AI

Solve, for 0 ≤ x < 360°, (a) $\sin(x - 20^\circ) = -\frac{1}{\sqrt{2}}$ (b) $\cos 3x = -\frac{1}{2}$ - Edexcel - A-Level Maths Pure - Question 2 - 2008 - Paper 2

Question icon

Question 2

Solve,-for-0-≤-x-<-360°,---(a)--$\sin(x---20^\circ)-=--\frac{1}{\sqrt{2}}$---(b)--$\cos-3x-=--\frac{1}{2}$-Edexcel-A-Level Maths Pure-Question 2-2008-Paper 2.png

Solve, for 0 ≤ x < 360°, (a) $\sin(x - 20^\circ) = -\frac{1}{\sqrt{2}}$ (b) $\cos 3x = -\frac{1}{2}$

Worked Solution & Example Answer:Solve, for 0 ≤ x < 360°, (a) $\sin(x - 20^\circ) = -\frac{1}{\sqrt{2}}$ (b) $\cos 3x = -\frac{1}{2}$ - Edexcel - A-Level Maths Pure - Question 2 - 2008 - Paper 2

Step 1

(a) $\sin(x - 20^\circ) = -\frac{1}{\sqrt{2}}$

96%

114 rated

Answer

To solve the equation, we first recognize that the sine function is negative in the third and fourth quadrants.

  1. Determine reference angle:
    sin1(12)=45\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -45^\circ,
    which corresponds to 4545^\circ, as sine is periodic.

  2. Find angles in the required quadrants:

    • In the third quadrant:
      x20=180+45=225x - 20^\circ = 180^\circ + 45^\circ = 225^\circ
      x=225+20=245\Rightarrow x = 225^\circ + 20^\circ = 245^\circ
    • In the fourth quadrant:
      x20=36045=315x - 20^\circ = 360^\circ - 45^\circ = 315^\circ
      x=315+20=335\Rightarrow x = 315^\circ + 20^\circ = 335^\circ
  3. The solutions in the interval [0,360)[0, 360^\circ) are:

    • x=245,335x = 245^\circ, 335^\circ.

Step 2

(b) $\cos 3x = -\frac{1}{2}$

99%

104 rated

Answer

To solve this equation, we first identify where the cosine function equals 12-\frac{1}{2}.

  1. Determine reference angles:
    The angles where cosθ=12\cos \theta = -\frac{1}{2} are 120120^\circ and 240240^\circ. So we have:

    • 3x=120+360k3x = 120^\circ + 360^\circ k,
    • 3x=240+360k3x = 240^\circ + 360^\circ k,
      for kZk \in \mathbb{Z}.
  2. Solve for xx:

    • From 3x=1203x = 120^\circ, we get x=40+120kx = 40^\circ + 120^\circ k
    • From 3x=2403x = 240^\circ, we get x=80+120kx = 80^\circ + 120^\circ k
  3. Find values for kk such that xx is in the interval [0,120)[0, 120^\circ) (considering multiples of 120120:

    • For k=0k = 0:
      x=40x = 40^\circ
      x=80x = 80^\circ
    • For k=1k = 1:
      x=160x = 160^\circ
  4. Collect valid solutions:
    The solutions in the interval [0,360)[0, 360) are:

    • x=40,80,160x = 40^\circ, 80^\circ, 160^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;