Photo AI

f(x) = \frac{6}{\sqrt{9 - 4x}}; \quad |x| < \frac{9}{4} (a) Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 - Edexcel - A-Level Maths Pure - Question 5 - 2012 - Paper 7

Question icon

Question 5

f(x)-=-\frac{6}{\sqrt{9---4x}};-\quad-|x|-<-\frac{9}{4}---(a)-Find-the-binomial-expansion-of-f(x)-in-ascending-powers-of-x,-up-to-and-including-the-term-in-x^3-Edexcel-A-Level Maths Pure-Question 5-2012-Paper 7.png

f(x) = \frac{6}{\sqrt{9 - 4x}}; \quad |x| < \frac{9}{4} (a) Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3. Give... show full transcript

Worked Solution & Example Answer:f(x) = \frac{6}{\sqrt{9 - 4x}}; \quad |x| < \frac{9}{4} (a) Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 - Edexcel - A-Level Maths Pure - Question 5 - 2012 - Paper 7

Step 1

Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3.

96%

114 rated

Answer

To find the binomial expansion of the function f(x)=694xf(x) = \frac{6}{\sqrt{9 - 4x}}, we can rewrite it as:

f(x)=6(94x)12f(x) = 6(9 - 4x)^{-\frac{1}{2}}

Using the binomial series expansion, we have:

(1+u)n=1+nu+n(n1)2u2+n(n1)(n2)6u3+(1 + u)^n = 1 + nu + \frac{n(n - 1)}{2}u^2 + \frac{n(n - 1)(n - 2)}{6}u^3 + \ldots

where u=4x9u = -\frac{4x}{9}. Thus:

f(x)=6[1+(12)(4x9)+(12)(32)2(4x9)2+(12)(32)(52)6(4x9)3]+f(x) = 6 \left[ 1 + \left(-\frac{1}{2}\right)\left(-\frac{4x}{9}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(-\frac{4x}{9}\right)^{2} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{6}\left(-\frac{4x}{9}\right)^{3} \right] + \ldots

Calculating each term:

  1. The first term is 61=66 \cdot 1 = 6.
  2. The second term is: 6(12)(4x9)=12x9=4x3.6 \cdot \left(-\frac{1}{2}\right)\left(-\frac{4x}{9}\right) = \frac{12x}{9} = \frac{4x}{3}.
  3. The third term is: 6(12)(32)2(4x9)2=63416x281=24x281=8x227.6 \cdot \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(-\frac{4x}{9}\right)^{2} = 6 \cdot \frac{3}{4} \cdot \frac{16x^{2}}{81} = \frac{24x^{2}}{81} = \frac{8x^{2}}{27}.
  4. The fourth term is: 6(12)(32)(52)6(4x9)3=65864x3729=564x37298=40x3729.6 \cdot \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{6}\left(-\frac{4x}{9}\right)^{3} = 6 \cdot \frac{5}{8} \cdot \frac{-64x^{3}}{729} = -\frac{5 \cdot 64x^{3}}{729 \cdot 8} = -\frac{40x^{3}}{729}.

Combining everything, we get:

f(x)=6+4x3+8x22740x3729+f(x) = 6 + \frac{4x}{3} + \frac{8x^{2}}{27} - \frac{40x^{3}}{729} + \ldots

Thus, the binomial expansion of f(x)f(x) up to x3x^3 is: f(x)=6+43x+827x240729x3+f(x) = 6 + \frac{4}{3}x + \frac{8}{27}x^2 - \frac{40}{729}x^3 + \ldots

Step 2

Use your answer to part (a) to find the binomial expansion in ascending powers of x, up to and including the term in x^3, of g(x) = \frac{6}{\sqrt{9 + 4x}}; \quad |x| < \frac{9}{4}.

99%

104 rated

Answer

Using the result from part (a), we can express g(x)g(x) as:

g(x)=69+4x=69(1+4x9)=2361+4x9.g(x) = \frac{6}{\sqrt{9 + 4x}} = \frac{6}{\sqrt{9(1 + \frac{4x}{9})}} = \frac{2}{3} \cdot \frac{6}{\sqrt{1 + \frac{4x}{9}}}.

We know the expansion for (1+u)12(1 + u)^{-\frac{1}{2}} gives: $$ 1 - \frac{1}{2}u + \frac{3}{8}u^2 - \frac{5}{16}u^3 + \ldots $,

where u=4x9u = \frac{4x}{9}:

=12x9+6x224320x31296+= 1 - \frac{2x}{9} + \frac{6x^2}{243} - \frac{20x^3}{1296} + \ldots

Thus: g(x)=23(12x9+6x224320x31296+)=234x27+12x272940x33888+g(x) = \frac{2}{3} \left( 1 - \frac{2x}{9} + \frac{6x^2}{243} - \frac{20x^3}{1296} + \ldots \right) = \frac{2}{3} - \frac{4x}{27} + \frac{12x^2}{729} - \frac{40x^3}{3888} + \ldots

Step 3

Use your answer to part (a) to find the binomial expansion in ascending powers of x, up to and including the term in x^3, of h(x) = \frac{6}{\sqrt{9 - 8x}}; \quad |x| < \frac{9}{8}.

96%

101 rated

Answer

Similarly, for h(x)h(x), we can rewrite it as:

h(x)=698x=23618x9.h(x) = \frac{6}{\sqrt{9 - 8x}} = \frac{2}{3} \cdot \frac{6}{\sqrt{1 - \frac{8x}{9}}}.

Using the binomial expansion again, we have: 1+4x9+12x281+40x3729+1 + \frac{4x}{9} + \frac{12x^2}{81} + \frac{40x^3}{729} + \ldots

Therefore, we have: h(x)=23(1+4x9+12x281+40x3729+)=23+8x27+24x2243+80x32187+h(x) = \frac{2}{3} \left( 1 + \frac{4x}{9} + \frac{12x^2}{81} + \frac{40x^3}{729} + \ldots \right) = \frac{2}{3} + \frac{8x}{27} + \frac{24x^2}{243} + \frac{80x^3}{2187} + \ldots

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;