Photo AI

Given that cos A = \frac{\sqrt{3}}{4}, where 270° < A < 360°, find the exact value of sin 2A - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 4

Question icon

Question 1

Given-that-cos-A-=-\frac{\sqrt{3}}{4},-where-270°-<-A-<-360°,-find-the-exact-value-of-sin-2A-Edexcel-A-Level Maths Pure-Question 1-2006-Paper 4.png

Given that cos A = \frac{\sqrt{3}}{4}, where 270° < A < 360°, find the exact value of sin 2A. Show that \cos \left( 2x + \frac{\pi}{3} \right) + \cos \left( 2x - \f... show full transcript

Worked Solution & Example Answer:Given that cos A = \frac{\sqrt{3}}{4}, where 270° < A < 360°, find the exact value of sin 2A - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 4

Step 1

Given that cos A = \frac{\sqrt{3}}{4}, where 270° < A < 360°, find the exact value of sin 2A.

96%

114 rated

Answer

To find the value of \sin 2A, we use the double angle formula:

sin2A=2sinAcosA.\sin 2A = 2 \sin A \cos A.

First, we need to determine \sin A. Since \cos A = \frac{\sqrt{3}}{4}, we find \sin A using the Pythagorean identity:

sin2A+cos2A=1.\sin^2 A + \cos^2 A = 1.

Therefore,

sin2A=1cos2A=1(34)2=1316=1316.\sin^2 A = 1 - \cos^2 A = 1 - \left(\frac{\sqrt{3}}{4}\right)^2 = 1 - \frac{3}{16} = \frac{13}{16}.

This gives us:

sinA=1316=134.\sin A = \sqrt{\frac{13}{16}} = \frac{\sqrt{13}}{4}.

Since A is in the fourth quadrant, \sin A is negative:

sinA=134.\sin A = -\frac{\sqrt{13}}{4}.

Now, substituting back into the double angle formula:

sin2A=2(134)(34)=23916=398.\sin 2A = 2 \left(-\frac{\sqrt{13}}{4}\right) \left(\frac{\sqrt{3}}{4}\right) = -\frac{2\sqrt{39}}{16} = -\frac{\sqrt{39}}{8}.

Thus, the exact value of \sin 2A is:

sin2A=398.\sin 2A = -\frac{\sqrt{39}}{8}.

Step 2

Show that \cos \left( 2x + \frac{\pi}{3} \right) + \cos \left( 2x - \frac{\pi}{3} \right) = \cos 2x.

99%

104 rated

Answer

To prove this statement, we can use the cosine addition formula:

cos(a+b)+cos(ab)=2cosacosb.\cos(a + b) + \cos(a - b) = 2 \cos a \cos b.

In this case, let:

  • (a = 2x)
  • (b = \frac{\pi}{3})

Then:

cos(2x+π3)+cos(2xπ3)=2cos(2x)cos(π3).\cos \left( 2x + \frac{\pi}{3} \right) + \cos \left( 2x - \frac{\pi}{3} \right) = 2 \cos \left(2x\right) \cos \left(\frac{\pi}{3}\right).

Knowing that (\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}), the equation simplifies to:

2cos(2x)12=cos(2x).2 \cos(2x) \cdot \frac{1}{2} = \cos(2x).

This confirms that:

cos(2x+π3)+cos(2xπ3)=cos2x.\cos \left( 2x + \frac{\pi}{3} \right) + \cos \left( 2x - \frac{\pi}{3} \right) = \cos 2x.

Step 3

Show that \frac{dy}{dx} = \sin 2x.

96%

101 rated

Answer

Given:

y=3sin2x+cos(2x+π3)+cos(2xπ3).y = 3 \sin^2 x + \cos \left( 2x + \frac{\pi}{3} \right) + \cos \left( 2x - \frac{\pi}{3} \right).

Using the chain rule for the first term and the result from part (b)(i) for the second terms:

  1. The derivative of the first term: ddx[3sin2x]=32sinxcosx=6sinxcosx,\frac{d}{dx} [3 \sin^2 x] = 3 \cdot 2 \sin x \cos x = 6 \sin x \cos x, which can be rewritten as:
    3sin2x.3 \sin 2x.

  2. From part (b)(i): cos(2x+π3)+cos(2xπ3)=cos2x.\cos \left( 2x + \frac{\pi}{3} \right) + \cos \left( 2x - \frac{\pi}{3} \right) = \cos 2x.
    Thus, the derivative will be(-\sin 2x \cdot 2 = -2 \sin 2x.$$

Combining these together:

dydx=3sin2x2sin2x=sin2x.\frac{dy}{dx} = 3 \sin 2x - 2 \sin 2x = \sin 2x.

Therefore, we have shown that:

dydx=sin2x.\frac{dy}{dx} = \sin 2x.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;