Photo AI

A curve has equation y = f(x) - Edexcel - A-Level Maths Pure - Question 11 - 2013 - Paper 2

Question icon

Question 11

A-curve-has-equation-y-=-f(x)-Edexcel-A-Level Maths Pure-Question 11-2013-Paper 2.png

A curve has equation y = f(x). The point P with coordinates (9, 0) lies on the curve. Given that f'(x) = \frac{x + 9}{\sqrt{x}}, \quad x > 0 (a) find f(x). (b) F... show full transcript

Worked Solution & Example Answer:A curve has equation y = f(x) - Edexcel - A-Level Maths Pure - Question 11 - 2013 - Paper 2

Step 1

find f(x).

96%

114 rated

Answer

To find f(x), we need to integrate f'(x).

  1. Start with: f(x)=x+9xf'(x) = \frac{x + 9}{\sqrt{x}}

  2. Simplify the expression by splitting it into two fractions: f(x)=xx+9x=x+9x12f'(x) = \frac{x}{\sqrt{x}} + \frac{9}{\sqrt{x}} = \sqrt{x} + 9x^{-\frac{1}{2}}

  3. Now integrate each term: f(x)=(x+9x12)dxf(x) = \int (\sqrt{x} + 9x^{-\frac{1}{2}}) dx

    • For x\sqrt{x}, the integral yields: 23x32\frac{2}{3}x^{\frac{3}{2}}
    • For 9x129x^{-\frac{1}{2}}, the integral yields: 92x12=18x9 \cdot 2x^{\frac{1}{2}} = 18\sqrt{x}
  4. Combine the results: f(x)=23x32+18x+Cf(x) = \frac{2}{3}x^{\frac{3}{2}} + 18\sqrt{x} + C

  5. To find the constant C, use the point P(9, 0):

    • Substitute x = 9 into f(x): 0=23932+18912+C0 = \frac{2}{3}\cdot 9^{\frac{3}{2}} + 18\cdot 9^{\frac{1}{2}} + C 0=2327+183+C0 = \frac{2}{3} \cdot 27 + 18 \cdot 3 + C 0=18+54+C0 = 18 + 54 + C C=72C = -72
  6. Thus, the final function is: f(x)=23x32+18x72f(x) = \frac{2}{3}x^{\frac{3}{2}} + 18\sqrt{x} - 72

Step 2

Find the x-coordinates of the two points on y = f(x) where the gradient of the curve is equal to 10.

99%

104 rated

Answer

To find the x-coordinates where the gradient is equal to 10, we need to set f'(x) = 10:

  1. Start with: f(x)=x+9x=10f'(x) = \frac{x + 9}{\sqrt{x}} = 10

  2. Multiply both sides by \sqrt{x} for elimination: x+9=10xx + 9 = 10\sqrt{x}

  3. Rearranging gives: x10x+9=0x - 10\sqrt{x} + 9 = 0

  4. Substitute x=u\sqrt{x} = u, thus u2=xu^2 = x:

    • The equation transforms to: u210u+9=0u^2 - 10u + 9 = 0
  5. Factor or use the quadratic formula to solve for u: u=10±(10)241921=10±642=10±82u = \frac{10 \pm \sqrt{(10)^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1} = \frac{10 \pm \sqrt{64}}{2} = \frac{10 \pm 8}{2}

    • This gives:
      • u=9u = 9
      • u=1u = 1
  6. Re-substituting to find x:

    • For u = 9: x=9x=81\sqrt{x} = 9 \Rightarrow x = 81
    • For u = 1: x=1x=1\sqrt{x} = 1 \Rightarrow x = 1
  7. The x-coordinates are:

    • x=81x = 81 and x=1x = 1.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;