Photo AI

Figure 2 shows a sketch of the curve C with equation $y = f(x)$ where $f(x) = 4( x^2 - 2)e^{-2x}$, $x \in \mathbb{R}$ (a) Show that $f'(x) = 8(2 + x - x^2)e^{-2x}$ - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 1

Question icon

Question 9

Figure-2-shows-a-sketch-of-the-curve-C-with-equation-$y-=-f(x)$-where-$f(x)-=-4(-x^2---2)e^{-2x}$,-$x-\in-\mathbb{R}$--(a)-Show-that-$f'(x)-=-8(2-+-x---x^2)e^{-2x}$-Edexcel-A-Level Maths Pure-Question 9-2020-Paper 1.png

Figure 2 shows a sketch of the curve C with equation $y = f(x)$ where $f(x) = 4( x^2 - 2)e^{-2x}$, $x \in \mathbb{R}$ (a) Show that $f'(x) = 8(2 + x - x^2)e^{-2x}$.... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with equation $y = f(x)$ where $f(x) = 4( x^2 - 2)e^{-2x}$, $x \in \mathbb{R}$ (a) Show that $f'(x) = 8(2 + x - x^2)e^{-2x}$ - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 1

Step 1

Show that $f'(x) = 8(2 + x - x^2)e^{-2x}$

96%

114 rated

Answer

To differentiate the function f(x)=4(x22)e2xf(x) = 4(x^2 - 2)e^{-2x}, we will use the product rule, which states that if we have two functions uu and vv, then ( (uv)' = u'v + uv' ).

Let:

  • u=4(x22)u = 4(x^2 - 2), hence u=8xu' = 8x.
  • v=e2xv = e^{-2x}, hence v=2e2xv' = -2e^{-2x}.

Now applying the product rule:

f(x)=uv+uv=(8x)e2x+4(x22)(2e2x)f'(x) = u'v + uv' = (8x)e^{-2x} + 4(x^2 - 2)(-2e^{-2x})

This simplifies as follows:

f(x)=8xe2x8(x22)e2xf'(x) = 8xe^{-2x} - 8(x^2 - 2)e^{-2x}

Combining terms, we get:

f(x)=(8x8x2+16)e2x=8(2+xx2)e2xf'(x) = (8x - 8x^2 + 16)e^{-2x} = 8(2 + x - x^2)e^{-2x}

Thus, we have shown that f(x)=8(2+xx2)e2xf'(x) = 8(2 + x - x^2)e^{-2x}.

Step 2

Hence find, in simplest form, the exact coordinates of the stationary points of C.

99%

104 rated

Answer

To find the stationary points of the curve, we set f(x)=0f'(x) = 0:

8(2+xx2)e2x=08(2 + x - x^2)e^{-2x} = 0

Since e2xe^{-2x} is never zero, we focus on:

2+xx2=02 + x - x^2 = 0

Rearranging the equation leads to:

x2x2=0x^2 - x - 2 = 0

Factoring gives:

(x2)(x+1)=0(x - 2)(x + 1) = 0

This results in:

  • x=2x = 2
  • x=1x = -1

To find the corresponding yy coordinates:

  • For x=2x = 2:

f(2)=4(222)e4=4(42)e4=8e4f(2) = 4(2^2 - 2)e^{-4} = 4(4 - 2)e^{-4} = 8e^{-4}

  • For x=1x = -1:

f(1)=4((1)22)e(2)=4(12)e2=4e2f(-1) = 4((-1)^2 - 2)e^{-(-2)} = 4(1 - 2)e^{2} = -4e^{2}

Thus, the stationary points are:

  • (1,4e2)(-1, -4e^2)
  • (2,8e4)(2, 8e^{-4})

Step 3

Find (i) the range of $g$

96%

101 rated

Answer

Given g(x)=2f(x)g(x) = 2f(x), we first find the range of f(x)f(x):

We know that the stationary points are:

  • (1,4e2)(-1, -4e^2) with f(1)=4e2f(-1) = -4e^2
  • (2,8e4)(2, 8e^{-4}) with f(2)=8e4f(2) = 8e^{-4}

From the behavior of the function as x±x \to \pm \infty, we observe:

  • As xx \to -\infty, f(x)0f(x) \to 0;
  • As xx \to \infty, f(x)0f(x) \to 0 as well.

Thus, the range of f(x)f(x) is:

  • [4e2,8e4][-4e^2, 8e^{-4}]

Hence, the range of g(x)g(x) is:

  • [2(4e2),2(8e4)]=[8e2,16e4][2(-4e^2), 2(8e^{-4})] = [-8e^2, 16e^{-4}].

Step 4

Find (ii) the range of $h$

98%

120 rated

Answer

Given h(x)=2f(x)3h(x) = 2f(x) - 3 with y>0y > 0, the range can be found from the range of f(x)f(x):

We already know:

  • The range of f(x)f(x) is [4e2,8e4][-4e^2, 8e^{-4}].

Subtracting 3 from each part of the range of f(x)f(x) yields:

  • Lower bound: 4e23-4e^2 - 3
  • Upper bound: 8e438e^{-4} - 3

Thus, the range of h(x)h(x) is:

  • [4e23,8e43][-4e^2 - 3, 8e^{-4} - 3].
  • Considering y>0y > 0, we determine valid values for this result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;