Photo AI

(a) Use the substitution $x = u^2$, $u > 0$, to show that \[\int \frac{1}{x(2\sqrt{x} - 1)} dx = \int \frac{2}{u(2u - 1)} du\] (b) Hence show that \[\int_{0}^{9} \frac{1}{x(2\sqrt{x} - 1)} dx = 2 \ln \left( \frac{a}{b} \right)\] where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 9

Question icon

Question 7

(a)-Use-the-substitution-$x-=-u^2$,-$u->-0$,-to-show-that--\[\int-\frac{1}{x(2\sqrt{x}---1)}-dx-=-\int-\frac{2}{u(2u---1)}-du\]--(b)-Hence-show-that--\[\int_{0}^{9}-\frac{1}{x(2\sqrt{x}---1)}-dx-=-2-\ln-\left(-\frac{a}{b}-\right)\]-where-$a$-and-$b$-are-integers-to-be-determined.-Edexcel-A-Level Maths Pure-Question 7-2013-Paper 9.png

(a) Use the substitution $x = u^2$, $u > 0$, to show that \[\int \frac{1}{x(2\sqrt{x} - 1)} dx = \int \frac{2}{u(2u - 1)} du\] (b) Hence show that \[\int_{0}^{9} ... show full transcript

Worked Solution & Example Answer:(a) Use the substitution $x = u^2$, $u > 0$, to show that \[\int \frac{1}{x(2\sqrt{x} - 1)} dx = \int \frac{2}{u(2u - 1)} du\] (b) Hence show that \[\int_{0}^{9} \frac{1}{x(2\sqrt{x} - 1)} dx = 2 \ln \left( \frac{a}{b} \right)\] where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 9

Step 1

Use the substitution $x = u^2$, $u > 0$, to show that $\int \frac{1}{x(2\sqrt{x} - 1)} dx = \int \frac{2}{u(2u - 1)} du$

96%

114 rated

Answer

To perform the substitution, we first need to compute the differential:

Let x=u2x = u^2, then: dx=2ududx = 2u \, du

Next, substituting into the integral:

1u2(2u1)(2udu) =2u(2u1)du\int \frac{1}{u^2(2u - 1)} (2u \, du)\ = \int \frac{2}{u(2u - 1)} du

This confirms the required transformation.

Step 2

Hence show that $\int_{0}^{9} \frac{1}{x(2\sqrt{x} - 1)} dx = 2 \ln \left( \frac{a}{b} \right)$

99%

104 rated

Answer

Using the result from part (a), we can evaluate the integral:

091x(2x1)dx=032u(2u1)du\int_{0}^{9} \frac{1}{x(2\sqrt{x} - 1)} dx = \int_{0}^{3} \frac{2}{u(2u - 1)} du

We can simplify this:

  1. The integral can be evaluated using partial fractions: 2u(2u1)=Au+B2u1\frac{2}{u(2u - 1)} = \frac{A}{u} + \frac{B}{2u - 1}

Solving for A and B yields:

  • A=2A = 2, B=2B = -2.
  1. Thus: (2u22u1)du\int \left( \frac{2}{u} - \frac{2}{2u - 1} \right) du

Evaluating gives: 2lnu2ln2u12 \ln|u| - 2 \ln|2u - 1| Evaluating from 0 to 3 results in: [2ln(3)2ln(5)]\left[ 2 \ln(3) - 2 \ln(5) \right]

This can be simplified to: 2ln(35)2 \ln \left( \frac{3}{5} \right)

Thus, identifying a=3a = 3 and b=5b = 5, we conclude: 091x(2x1)dx=2ln(ab)\int_{0}^{9} \frac{1}{x(2\sqrt{x} - 1)} dx = 2 \ln \left( \frac{a}{b} \right)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;