Photo AI

Given that $$\frac{2x^{-2}-x^{-3}}{\sqrt{x}}$$ can be written in the form $2x^p - x^q$, (a) write down the value of p and the value of q - Edexcel - A-Level Maths Pure - Question 8 - 2009 - Paper 1

Question icon

Question 8

Given-that--$$\frac{2x^{-2}-x^{-3}}{\sqrt{x}}$$--can-be-written-in-the-form-$2x^p---x^q$,---(a)-write-down-the-value-of-p-and-the-value-of-q-Edexcel-A-Level Maths Pure-Question 8-2009-Paper 1.png

Given that $$\frac{2x^{-2}-x^{-3}}{\sqrt{x}}$$ can be written in the form $2x^p - x^q$, (a) write down the value of p and the value of q. Given that $$y = 5x^4... show full transcript

Worked Solution & Example Answer:Given that $$\frac{2x^{-2}-x^{-3}}{\sqrt{x}}$$ can be written in the form $2x^p - x^q$, (a) write down the value of p and the value of q - Edexcel - A-Level Maths Pure - Question 8 - 2009 - Paper 1

Step 1

write down the value of p and the value of q.

96%

114 rated

Answer

To express 2x2x3x\frac{2x^{-2}-x^{-3}}{\sqrt{x}} in the form 2xpxq2x^p - x^q, first simplify the expression:

  1. Rewrite the denominator:
    x=x1/2.\sqrt{x} = x^{1/2}.
  2. Thus, we have:
    2x2x3x1/2=2x212x312.\frac{2x^{-2}-x^{-3}}{x^{1/2}} = 2x^{-2 - \frac{1}{2}} - x^{-3 - \frac{1}{2}}.
  3. This simplifies to:
    2x52x72.2x^{-\frac{5}{2}} - x^{-\frac{7}{2}}.
  4. Therefore, we can identify the values as:
    • p=52p = -\frac{5}{2}
    • q=72q = -\frac{7}{2}.

Step 2

find \( \frac{dy}{dx}, \) simplifying the coefficient of each term.

99%

104 rated

Answer

We have:
y=5x43+2x2x3x.y = 5x^4 - 3 + \frac{2x^{-2}-x^{-3}}{\sqrt{x}}.

  1. Differentiate each term:

    • For 5x45x^4:
      • The derivative is 20x3.20x^3.
    • For 3-3:
      • The derivative is 0.0.
    • For the term 2x2x3x\frac{2x^{-2}-x^{-3}}{\sqrt{x}}, use the quotient rule or simplify first:
      • We already simplified it in part (a) to:

        2x52x72.2x^{-\frac{5}{2}} - x^{-\frac{7}{2}}.

      • Differentiating gives:

        • For 2x522x^{-\frac{5}{2}}:

          ddx(2x52)=252x72=5x72.\frac{d}{dx}(2x^{-\frac{5}{2}}) = 2 \cdot -\frac{5}{2}x^{-\frac{7}{2}} = -5x^{-\frac{7}{2}}.

        • For x72-x^{-\frac{7}{2}}:

          ddx(x72)=(72)x92=72x92.\frac{d}{dx}(-x^{-\frac{7}{2}}) = -(-\frac{7}{2})x^{-\frac{9}{2}} = \frac{7}{2}x^{-\frac{9}{2}}.

  2. Combine all derivatives:

    dydx=20x35x72+72x92.\frac{dy}{dx} = 20x^3 - 5x^{-\frac{7}{2}} + \frac{7}{2}x^{-\frac{9}{2}}.

  3. For simplification, express in standard form:

    dydx=20x35x72+72x92.\frac{dy}{dx} = 20x^3 - 5x^{-\frac{7}{2}} + \frac{7}{2}x^{-\frac{9}{2}}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;