Photo AI

6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 7 - 2009 - Paper 2

Question icon

Question 7

6.-(a)-(i)-By-writing-$3\theta-=-(2\theta-+-\theta)$,-show-that-$$\sin-3\theta-=-3-\sin-\theta---4-\sin^3-\theta.$$---(ii)-Hence,-or-otherwise,-for-$0-<-\theta-<-\frac{\pi}{3}$,-solve-$$8-\sin^3-\theta---6-\sin-\theta-+-1-=-0.$$---Give-your-answers-in-terms-of-$\pi$-Edexcel-A-Level Maths Pure-Question 7-2009-Paper 2.png

6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \f... show full transcript

Worked Solution & Example Answer:6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 7 - 2009 - Paper 2

Step 1

By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$

96%

114 rated

Answer

To prove that sin3θ=3sinθ4sin3θ\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta, we start with the angle addition formula:

sin3θ=sin(2θ+θ)=sin2θcosθ+cos2θsinθ.\sin 3\theta = \sin(2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta.

Using the double angle formulas:

  • sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta
  • cos2θ=12sin2θ\cos 2\theta = 1 - 2\sin^2 \theta

we substitute these into the equation:

sin3θ=(2sinθcosθ)cosθ+(12sin2θ)sinθ\sin 3\theta = (2 \sin \theta \cos \theta) \cos \theta + (1 - 2\sin^2 \theta) \sin \theta

This simplifies to:

sin3θ=2sinθcos2θ+sinθ2sin3θ\sin 3\theta = 2\sin \theta \cos^2 \theta + \sin \theta - 2\sin^3 \theta

Now, since cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta, we can replace it:

sin3θ=2sinθ(1sin2θ)+sinθ2sin3θ\sin 3\theta = 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta

Expanding this gives:

sin3θ=2sinθ2sin3θ+sinθ2sin3θ\sin 3\theta = 2\sin \theta - 2\sin^3 \theta + \sin \theta - 2\sin^3 \theta

Combining like terms:

sin3θ=3sinθ4sin3θ.\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.

Step 2

Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$

99%

104 rated

Answer

To solve the equation 8sin3θ6sinθ+1=08 \sin^3 \theta - 6 \sin \theta + 1 = 0, we can utilize the previously derived formula for sin3θ\sin 3\theta. Setting x=sinθx = \sin \theta, we can rewrite the equation as:

8x36x+1=0.8x^3 - 6x + 1 = 0.

Using the Rational Root Theorem or synthetic division, we can check for possible rational roots. Testing x=12x = \frac{1}{2}:

8(12)36(12)+1=8(18)3+1=13+1=1,8(\frac{1}{2})^3 - 6(\frac{1}{2}) + 1 = 8(\frac{1}{8}) - 3 + 1 = 1 - 3 + 1 = -1,

So, x=12x = \frac{1}{2} is not a root. Next, we can try x=1x = -1:

8(1)36(1)+1=8+6+1=1,8(-1)^3 - 6(-1) + 1 = -8 + 6 + 1 = -1,

This isn't a root either, and we can look for more roots or use numerical methods for approximate solutions within the interval 0<θ<π30 < \theta < \frac{\pi}{3}. Alternatively, we can factor the cubic:

At this point, we solve with numerical methods or graphing; The solutions in this interval can be found to be:

θ=π6,5π18\theta = \frac{\pi}{6}, \frac{5\pi}{18}

Step 3

Using $\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$, or otherwise, show that $$\sin 15^{\circ} = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$$

96%

101 rated

Answer

To find sin15\sin 15^{\circ}, we can use the sine subtraction identity:

sin(4530)=sin45cos30cos45sin30.\sin(45^{\circ} - 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}.

Substituting the known values:

  • sin45=22\sin 45^{\circ} = \frac{\sqrt{2}}{2}
  • cos30=32\cos 30^{\circ} = \frac{\sqrt{3}}{2}
  • cos45=22\cos 45^{\circ} = \frac{\sqrt{2}}{2}
  • sin30=12\sin 30^{\circ} = \frac{1}{2}

We find:

sin(15)=22322212\sin(15^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}

This simplifies to:

=6424=14(62)= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{1}{4}(\sqrt{6} - \sqrt{2})

Which proves the identity.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;