Photo AI

6. (i) Without using a calculator, find the exact value of (sin 22.5° + cos 22.5°)² You must show each stage of your working - Edexcel - A-Level Maths Pure - Question 27 - 2013 - Paper 1

Question icon

Question 27

6.-(i)-Without-using-a-calculator,-find-the-exact-value-of---(sin-22.5°-+-cos-22.5°)²---You-must-show-each-stage-of-your-working-Edexcel-A-Level Maths Pure-Question 27-2013-Paper 1.png

6. (i) Without using a calculator, find the exact value of (sin 22.5° + cos 22.5°)² You must show each stage of your working. (ii) (a) Show that cos 2θ + sin ... show full transcript

Worked Solution & Example Answer:6. (i) Without using a calculator, find the exact value of (sin 22.5° + cos 22.5°)² You must show each stage of your working - Edexcel - A-Level Maths Pure - Question 27 - 2013 - Paper 1

Step 1

Without using a calculator, find the exact value of (sin 22.5° + cos 22.5°)²

96%

114 rated

Answer

To find the value of (sin 22.5° + cos 22.5°)², we start by expanding the expression using the formula for a binomial expansion:

(a+b)2=a2+2ab+b2(a + b)² = a² + 2ab + b²

Thus, we have:

(extsin22.5°+extcos22.5°)2=extsin222.5°+2extsin22.5°extcos22.5°+extcos222.5°( ext{sin } 22.5° + ext{cos } 22.5°)² = ext{sin}^2 22.5° + 2 ext{sin } 22.5° ext{cos } 22.5° + ext{cos}^2 22.5°

Using the Pythagorean identity, extsin2θ+extcos2θ=1 ext{sin}^2 θ + ext{cos}^2 θ = 1, and the double angle formula, we can rewrite:

extsin222.5°+extcos222.5°=1 ext{sin}² 22.5° + ext{cos}² 22.5° = 1

Next, using the double angle formula for sine:

ad{2}}{2}$$ So, substituting back into our expansion gives: $$1 + ext{sin } 45° = 1 + rac{ ad{2}}{2}$$ Therefore, $$( ext{sin } 22.5° + ext{cos } 22.5°)² = 1 + rac{ ad{2}}{2}$$.

Step 2

Show that cos 2θ + sin θ = 1 may be written in the form k sin²θ - sin θ = 0, stating the value of k.

99%

104 rated

Answer

We start with the equation:

extcos2θ+extsinθ=1 ext{cos } 2θ + ext{sin } θ = 1

Using the double angle formula for cosine:

extcos2θ=12extsin2θ ext{cos } 2θ = 1 - 2 ext{sin}² θ

Substituting this into the equation gives:

12extsin2θ+extsinθ=11 - 2 ext{sin}² θ + ext{sin} θ = 1

Simplifying, we have:

2extsin2θ+extsinθ=0-2 ext{sin}² θ + ext{sin} θ = 0

Rearranging it, we find:

2extsin2θextsinθ=02 ext{sin}² θ - ext{sin} θ = 0

Thus, it can be written in the form:

kextsin2θextsinθ=0k ext{sin}² θ - ext{sin} θ = 0

where the value of k is 2.

Step 3

Hence solve, for 0 < θ < 360°, the equation cos 2θ + sin θ = 1.

96%

101 rated

Answer

From the previous step, we derived:

2extsin2θextsinθ=02 ext{sin}² θ - ext{sin} θ = 0

Factoring gives:

extsinθ(2extsinθ1)=0 ext{sin} θ (2 ext{sin} θ - 1) = 0

This implies two cases:

  1. extsinθ=0 ext{sin} θ = 0

ightarrow ext{sin} θ = rac{1}{2}$$

For the first case, ext{sin} θ = 0 occurs at: θ=0°,180°θ = 0°, 180°
Since we require 0 < θ < 360°: θ=180°θ = 180°

For the second case, ext{sin} θ = rac{1}{2} occurs at: θ=30°,150°θ = 30°, 150°

Thus, the complete solution set for 0 < θ < 360° is: θ=30°,150°,180°θ = 30°, 150°, 180°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;