Photo AI

2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2012 - Paper 8

Question icon

Question 4

2.-(a)-Use-integration-by-parts-to-find-\(-\int-x-\sin-3x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 4-2012-Paper 8.png

2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \). (b) Using your answer to part (a), find \( \int x \cos 3x \, dx \).

Worked Solution & Example Answer:2. (a) Use integration by parts to find \( \int x \sin 3x \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2012 - Paper 8

Step 1

Use integration by parts to find \( \int x \sin 3x \, dx \)

96%

114 rated

Answer

To solve ( \int x \sin 3x , dx ) using integration by parts, we apply the formula:

[ \int u , dv = uv - \int v , du ]

Let:

  • ( u = x ) → ( du = dx )
  • ( dv = \sin 3x , dx ) → ( v = -\frac{1}{3} \cos 3x )

Plugging these into the integration by parts formula, we have:

[ \int x \sin 3x , dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x , dx ]

Now, we evaluate the remaining integral:

[ \int \cos 3x , dx = \frac{1}{3} \sin 3x + C ]

Thus, substituting this back, we get:

[ \int x \sin 3x , dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C ]

Step 2

Using your answer to part (a), find \( \int x \cos 3x \, dx \)

99%

104 rated

Answer

Using the result from part (a), we can find ( \int x \cos 3x , dx ) again using integration by parts:

Let:

  • ( u = x ) → ( du = dx )
  • ( dv = \cos 3x , dx ) → ( v = \frac{1}{3} \sin 3x )

Now apply the formula:

[ \int x \cos 3x , dx = \frac{1}{3} x \sin 3x - \int \frac{1}{3} \sin 3x , dx ]

From part (a), we know: [ \int \sin 3x , dx = -\frac{1}{3} \cos 3x + C ]

Thus substituting back, we have:

[ \int x \cos 3x , dx = \frac{1}{3} x \sin 3x + \frac{1}{9} \cos 3x + C ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;