The line $l_1$ has equation
$$egin{pmatrix} 1 \ 0 \ -1 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 1 \ -1 \ 0 \\ \end{pmatrix} = \begin{pmatrix} 0 \ -1 \ 0 \ \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 1 \ \end{pmatrix} .$$
The line $l_2$ has equation
$$egin{pmatrix} 1 \ 2 \ 3 \\ 6 \ 2 \ 1 \\ -1 \ -1 \ 2 \ \end{pmatrix} = \begin{pmatrix} 3 \ 6 \ \mu \ \end{pmatrix} + \begin{pmatrix} 2 \ -1 \ -1 \ \end{pmatrix} .$$
(a) Show that $l_1$ and $l_2$ do not meet - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 7

Question 7

The line $l_1$ has equation
$$egin{pmatrix} 1 \ 0 \ -1 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 1 \ -1 \ 0 \\ \end{pmatrix} = \begin{pmatrix} 0 \ -1 \ 0 \ \end{pmatrix} + \lam... show full transcript
Worked Solution & Example Answer:The line $l_1$ has equation
$$egin{pmatrix} 1 \ 0 \ -1 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 1 \ -1 \ 0 \\ \end{pmatrix} = \begin{pmatrix} 0 \ -1 \ 0 \ \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 1 \ \end{pmatrix} .$$
The line $l_2$ has equation
$$egin{pmatrix} 1 \ 2 \ 3 \\ 6 \ 2 \ 1 \\ -1 \ -1 \ 2 \ \end{pmatrix} = \begin{pmatrix} 3 \ 6 \ \mu \ \end{pmatrix} + \begin{pmatrix} 2 \ -1 \ -1 \ \end{pmatrix} .$$
(a) Show that $l_1$ and $l_2$ do not meet - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 7
Show that $l_1$ and $l_2$ do not meet.

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To check if the lines l1 and l2 intersect, we can equate their parametric equations.
-
The equations for the lines can be represented as follows:
- From l1:
egin{pmatrix} 0 \ 1 \ -1 \ \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 1 \ \end{pmatrix}
- From l2:
egin{pmatrix} 3 \ 6 \ \mu \ \end{pmatrix} + \begin{pmatrix} 2 \ -1 \ -1 \ \end{pmatrix}
-
Equating components gives the system of equations:
- 0 + eta = 3 + 2 heta
- 1 + eta = 6 - heta
- -1 + eta = heta
-
Solve any two of these equations. For example:
- From the first equation:
β=3−λ
- Plugging this into the second equation:
1+(3−λ)=6−θ
⇒λ+θ=8(1)
- From the third equation:
−1+(3−λ)=θ(2)
-
By substituting the values:
- From (1) and (2):
- You would find a contradiction indicating that there is no solution.
Thus, l1 and l2 do not intersect.
Find the cosine of the acute angle between $AB$ and $l_1$.

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
-
Substitute lambda=1 into the line l1 to find point A:
A=(0 1 −1 )+1(1 1 1 )=(1 2 0 ).
-
Substitute mu=2 into line l2 to find point B:
B=(3 6 2 )+2(2 −1 −1 )=(7 4 0 ).
-
Calculate the vector AB:
AB=B−A=(7 4 0 )−(1 2 0 )=(6 2 0 ).
-
The direction vector for line l1 is:
d1=(1 1 1 ).
-
Using the dot product formula:
cosθ=∣AB∣∣d1∣AB⋅d1.
- Calculate the dot product:
AB⋅d1=6(1)+2(1)+0(1)=8.
- The magnitudes are:
∣AB∣=62+22=40=210,
∣d1∣=12+12+12=3.
-
Therefore:
cosθ=(210)(3)8=304.
Thus, the cosine of the acute angle between AB and l1 is:
cosθ=304.
Join the A-Level students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;