Photo AI

7. (a) Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^{\circ}.$$ (b) On the axes on page 20, sketch the graph of $$y = 2 \csc 2\theta$$ for $0^{\circ} < \theta < 360^{\circ}$ - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 5

Question icon

Question 7

7.-(a)-Prove-that---$$\frac{\sin-\theta-\cdot-\cos-\theta}{\cos^2-\theta}-+-\frac{\sin-\theta}{\sin-\theta}-=-2-\csc-2\theta,-\quad-\theta-\neq-90^{\circ}.$$----(b)-On-the-axes-on-page-20,-sketch-the-graph-of---$$y-=-2-\csc-2\theta$$---for-$0^{\circ}-<-\theta-<-360^{\circ}$-Edexcel-A-Level Maths Pure-Question 7-2007-Paper 5.png

7. (a) Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^{\circ}.$$ (b) ... show full transcript

Worked Solution & Example Answer:7. (a) Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^{\circ}.$$ (b) On the axes on page 20, sketch the graph of $$y = 2 \csc 2\theta$$ for $0^{\circ} < \theta < 360^{\circ}$ - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 5

Step 1

Prove that $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta} + \frac{\sin \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90^{\circ}.$$

96%

114 rated

Answer

To prove the given equation, we start by simplifying the left-hand side:

  1. Combine the terms:
    sinθcosθ+cos2θcos2θ\frac{\sin \theta \cdot \cos \theta + \cos^2 \theta}{\cos^2 \theta}.

  2. Now, replace sin2θ\sin 2\theta using the double angle identity:
    sin2θ=2sinθcosθ.\sin 2\theta = 2\sin \theta \cos \theta.

  3. The left-hand side then becomes: 2sinθcosθcos2θ=sin2θcos2θ.\frac{2\sin \theta \cos \theta}{\cos^2 \theta} = \frac{\sin 2\theta}{\cos^2 \theta}.

  4. Recognizing that csc2θ=1sin2θ\csc 2\theta = \frac{1}{\sin 2\theta}, we rewrite the equation to reach the conclusion:
    =2csc2θ.= 2\csc 2\theta.
    Thus, we have proved the identity.

Step 2

On the axes on page 20, sketch the graph of $$y = 2 \csc 2\theta$$ for $0^{\circ} < \theta < 360^{\circ}$.

99%

104 rated

Answer

When sketching the graph of y=2csc(2θ)y = 2\csc(2\theta):

  1. Identify asymptotes where sin(2θ)=0\sin(2\theta) = 0, which occurs at multiples of 9090^{\circ}, specifically at 9090^{\circ}, 270270^{\circ}, etc.
  2. The function has maximum and minimum values of 22 and 2-2, respectively, at the points in between the asymptotes.
  3. Ensure the sketch properly represents the periodic nature of the cosecant function, reflecting the values at calculated points.

Step 3

Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation $$\frac{\sin \theta \cdot \cos \theta}{\cos^2 \theta \cdot \sin \theta} = 3,$$

96%

101 rated

Answer

To solve the equation:

  1. Simplify it to: sinθ=3cos2θ.\sin \theta = 3 \cos^2 \theta.
  2. Substitute sinθ\sin \theta with 1cos2θ\sqrt{1 - \cos^2 \theta} and rearrange.
  3. This leads to: cos2θ=13.\cos^2 \theta = \frac{1}{3}.
  4. Hence, calculate: θ=180cos1(13)\theta = 180^{\circ} - \cos^{-1}(\sqrt{\frac{1}{3}}) and
    θ=180+cos1(13).\theta = 180^{\circ} + \cos^{-1}(\sqrt{\frac{1}{3}}).
  5. Solve these equations to find the two angles and round to one decimal place.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;