Photo AI

Given that $$y = \frac{x - 4}{2 + \sqrt{x}} \quad x > 0$$ show that $$\frac{dy}{dx} = \frac{1}{A \sqrt{x}} \quad x > 0$$ where A is a constant to be found. - Edexcel - A-Level Maths Pure - Question 2 - 2021 - Paper 1

Question icon

Question 2

Given-that--$$y-=-\frac{x---4}{2-+-\sqrt{x}}-\quad-x->-0$$-show-that--$$\frac{dy}{dx}-=-\frac{1}{A-\sqrt{x}}-\quad-x->-0$$-where-A-is-a-constant-to-be-found.-Edexcel-A-Level Maths Pure-Question 2-2021-Paper 1.png

Given that $$y = \frac{x - 4}{2 + \sqrt{x}} \quad x > 0$$ show that $$\frac{dy}{dx} = \frac{1}{A \sqrt{x}} \quad x > 0$$ where A is a constant to be found.

Worked Solution & Example Answer:Given that $$y = \frac{x - 4}{2 + \sqrt{x}} \quad x > 0$$ show that $$\frac{dy}{dx} = \frac{1}{A \sqrt{x}} \quad x > 0$$ where A is a constant to be found. - Edexcel - A-Level Maths Pure - Question 2 - 2021 - Paper 1

Step 1

Show that $\frac{dy}{dx}$ can be expressed using the quotient rule

96%

114 rated

Answer

To differentiate the function, we apply the quotient rule: dydx=(2+x)ddx(x4)(x4)ddx(2+x)(2+x)2\frac{dy}{dx} = \frac{(2 + \sqrt{x}) \frac{d}{dx}(x - 4) - (x - 4) \frac{d}{dx}(2 + \sqrt{x})}{(2 + \sqrt{x})^2}

Calculating the derivatives:

  • The derivative of the numerator, ddx(x4)=1\frac{d}{dx}(x - 4) = 1.
  • The derivative of the denominator, ddx(2+x)=12x\frac{d}{dx}(2 + \sqrt{x}) = \frac{1}{2\sqrt{x}}.

Substituting these back into the formula gives: dydx=(2+x)(1)(x4)(12x)(2+x)2\frac{dy}{dx} = \frac{(2 + \sqrt{x})(1) - (x - 4)(\frac{1}{2\sqrt{x}})}{(2 + \sqrt{x})^2}

Step 2

Simplify the expression obtained for $\frac{dy}{dx}$

99%

104 rated

Answer

Expanding and simplification yields: dydx=(2+x)x42x(2+x)2\frac{dy}{dx} = \frac{(2 + \sqrt{x}) - \frac{x - 4}{2\sqrt{x}}}{(2 + \sqrt{x})^2} This leads to: =2+xx2x+42x(2+x)2= \frac{2 + \sqrt{x} - \frac{x}{2\sqrt{x}} + \frac{4}{2\sqrt{x}}}{(2 + \sqrt{x})^2}

Combining like terms gives: =(2x+x+4)2x(2+x)2= \frac{(2\sqrt{x} + x + 4)}{2\sqrt{x}(2 + \sqrt{x})^2}

Step 3

Identify the constant A

96%

101 rated

Answer

To check if the results match the form mentioned in the question, we can equate: dydx=1Ax\frac{dy}{dx} = \frac{1}{A \sqrt{x}} This implies that: A=2x(2+x)22x+x+4A = \frac{2\sqrt{x}(2 + \sqrt{x})^2}{2\sqrt{x} + x + 4} Thus, AA must be determined from the equation derived in the previous step.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;