Photo AI

Figure 1 shows part of the curve with equation $y = ext{(0.75 + cos } x)$ - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 6

Question icon

Question 3

Figure-1-shows-part-of-the-curve-with-equation-$y-=--ext{(0.75-+-cos-}-x)$-Edexcel-A-Level Maths Pure-Question 3-2010-Paper 6.png

Figure 1 shows part of the curve with equation $y = ext{(0.75 + cos } x)$. The finite region $R$, shown shaded in Figure 1, is bounded by the curve, the y-axis, the... show full transcript

Worked Solution & Example Answer:Figure 1 shows part of the curve with equation $y = ext{(0.75 + cos } x)$ - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 6

Step 1

Complete the table with values of $y$ corresponding to $x = rac{ ext{π}}{6}$ and $x = rac{ ext{π}}{4}$

96%

114 rated

Answer

xx00 rac{ ext{π}}{12} rac{ ext{π}}{6} rac{ ext{π}}{4} rac{ ext{π}}{3}
yy1.32291.22471.29731.22471.180

Step 2

Use the trapezium rule (i) with the values of $y$ at $x = 0$, $x = rac{ ext{π}}{6}$ and $x = rac{ ext{π}}{3}$

99%

104 rated

Answer

The trapezium rule formula is given by:

I ext{ }= ext{ } rac{b-a}{2} imes (f(a) + f(b))

For this case, we have:

  • a=0a = 0, b = rac{ ext{π}}{6}
  • f(0)=1.3229f(0) = 1.3229, figg( rac{ ext{π}}{6}igg) = 1.2973, figg( rac{ ext{π}}{3}igg) = 1.180

Thus, the estimate of the area of RR is approximately

rac{ rac{ ext{π}}{6} - 0}{2} imes (1.3229 + 1.2973 + 1.180) ext{ } \\ ext{ } = rac{ ext{π}}{12} imes (1.3229 + 1.2973 + 1.180) ext{ } \\ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \\ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \\ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } \\ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } \\ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } \\ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } \\ ext{ } \text{ } \ ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \text{ } \text{ } \ ext{ } \text{ } 1.249 ext{ (to 3 decimal places)}

Step 3

Use the trapezium rule (ii) with the values of $y$ at $x = 0$, $x = rac{ ext{π}}{12}$, $x = rac{ ext{π}}{6}$, $x = rac{ ext{π}}{4}$ and $x = rac{ ext{π}}{3}$

96%

101 rated

Answer

Using a more detailed trapezium rule:

I ext{ }= ext{ } rac{b-a}{n} imes igg( f(a) + 2igg(figg( rac{ ext{π}}{12}igg) + figg( rac{ ext{π}}{6}igg) + figg( rac{ ext{π}}{4}igg)igg) + f(b) igg)

Where:

  • a=0a = 0, b = rac{ ext{π}}{3}
  • f(0)=1.3229f(0) = 1.3229, figg( rac{ ext{π}}{12}igg) = 1.2247, figg( rac{ ext{π}}{6}igg) = 1.2973, figg( rac{ ext{π}}{4}igg) = 1.2247, figg( rac{ ext{π}}{3}igg) = 1.180

Thus, we can calculate:

I = rac{ rac{ ext{π}}{3}}{4} imes igg( 1.3229 + 2(1.2247 + 1.2973 + 1.2247) + 1.180 igg) \ ext{ } ext{ } \ ext{} ext{ } \ ext{} \ ext{} \ ext{} \ \text{ } ext{ } 1.257 ext{ (to 3 decimal places)}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;