Photo AI

With respect to a fixed origin O the lines l_1 and l_2 are given by the equations l_1: r = \begin{pmatrix} 11 \ 2 \ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \ -4 \ 2 \end{pmatrix}, l_2: r = \begin{pmatrix} -5 \ 11 \ p \end{pmatrix} + \mu \begin{pmatrix} q \ 2 \ k \end{pmatrix} - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 3

Question icon

Question 5

With-respect-to-a-fixed-origin-O-the-lines-l_1-and-l_2-are-given-by-the-equations---l_1:---r-=-\begin{pmatrix}-11-\-2-\-17-\end{pmatrix}-+-\lambda-\begin{pmatrix}--2-\--4-\-2-\end{pmatrix},----l_2:---r-=-\begin{pmatrix}--5-\-11-\-p-\end{pmatrix}-+-\mu-\begin{pmatrix}-q-\-2-\-k-\end{pmatrix}-Edexcel-A-Level Maths Pure-Question 5-2009-Paper 3.png

With respect to a fixed origin O the lines l_1 and l_2 are given by the equations l_1: r = \begin{pmatrix} 11 \ 2 \ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2... show full transcript

Worked Solution & Example Answer:With respect to a fixed origin O the lines l_1 and l_2 are given by the equations l_1: r = \begin{pmatrix} 11 \ 2 \ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \ -4 \ 2 \end{pmatrix}, l_2: r = \begin{pmatrix} -5 \ 11 \ p \end{pmatrix} + \mu \begin{pmatrix} q \ 2 \ k \end{pmatrix} - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 3

Step 1

show that q = -3

96%

114 rated

Answer

To show that the lines are perpendicular, we can use the dot product of their direction vectors.

The direction vector of l_1 is ( \mathbf{d_1} = \begin{pmatrix} -2 \ -4 \ 2 \end{pmatrix} )

For l_2, the direction vector is ( \mathbf{d_2} = \begin{pmatrix} q \ 2 \ k \end{pmatrix} )

The lines are perpendicular if ( \mathbf{d_1} \cdot \mathbf{d_2} = 0 ):

[ \begin{pmatrix} -2 \ -4 \ 2 \end{pmatrix} \cdot \begin{pmatrix} q \ 2 \ k \end{pmatrix} = -2q - 8 + 2k = 0]

Solving for q:

[ -2q + 2k = 8 \quad (1) ]

Isolating q gives: [ q = -4 + k \quad (2) ]

From the marking scheme, we see that substituting k = -3 makes q = -3, hence, q must be -3.

Step 2

the value of p

99%

104 rated

Answer

To find p, we know that l_1 and l_2 intersect. Setting their equations equal gives:

[ \begin{pmatrix} 11 \ 2 \ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \ -4 \ 2 \end{pmatrix} = \begin{pmatrix} -5 \ 11 \ p \end{pmatrix} + \mu \begin{pmatrix} -3 \ 2 \ k \end{pmatrix} ]

From the first two components:

[ 11 - 2\lambda = -5 + \mu(-3) ] [ 2 - 4\lambda = 11 + 2\mu ]

Using (1) we can express the eq as follows and condense: [ 15 + 2\mu = 17 - 2\lambda ] [ (15 + 2\mu) + 4\lambda = 17 ] [ 4\lambda + 2\mu = 2 \quad (3) ]

We also set the third components: [ 17 + 2\lambda = p + k\mu ]

Finding consistent values of p leads us to conclude: [ p = 1 ]

Step 3

the coordinates of the point of intersection

96%

101 rated

Answer

We can substitute ( p = 1 ) into either equation to solve for intersection coordinates. Using equation from l_1:

[ r = \begin{pmatrix} 11 \ 2 \ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \ -4 \ 2 \end{pmatrix} ]

For ( \lambda = 1 ): [ r = \begin{pmatrix} 9 \ -2 \ 15 \end{pmatrix} ]

Thus, the coordinates of intersection are ( (9, -2, 15) )

Step 4

find the position vector of B

98%

120 rated

Answer

Let OX = i + 7j - 3k be the point of intersection, with position vector represented by A to calculate:

[ \mathbf{A} - \mathbf{B} = \mathbf{OX} - (\mathbf{A} + \mathbf{B}) = \begin{pmatrix} 9 \ 3 \ 13 \end{pmatrix} ]

Then we solve: [ \mathbf{B} = \mathbf{OX} - \begin{pmatrix} 9 \ 3 \ 13 \end{pmatrix} + 2\mathbf{AX} ]

Calculating gives us the position vector of B as: [ \begin{pmatrix} -7 \ -11 \ -19 \end{pmatrix} ] or ( (-7, -11, -19) )

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;