Photo AI

Given that $y = \frac{\ln(x^2+1)}{x}$, find $\frac{dy}{dx}$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Question icon

Question 4

Given-that-$y-=-\frac{\ln(x^2+1)}{x}$,-find-$\frac{dy}{dx}$-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 2.png

Given that $y = \frac{\ln(x^2+1)}{x}$, find $\frac{dy}{dx}$. Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.

Worked Solution & Example Answer:Given that $y = \frac{\ln(x^2+1)}{x}$, find $\frac{dy}{dx}$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Step 1

Given that $y = \frac{\ln(x^2+1)}{x}$, find $\frac{dy}{dx}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we will use the quotient rule. Let:

u=ln(x2+1)u = \ln(x^2 + 1)

Now, we have:

dudx=2xx2+1\frac{du}{dx} = \frac{2x}{x^2 + 1}

Using the quotient rule:

dydx=uvuvv2\frac{dy}{dx} = \frac{u'v - uv'}{v^2}

where u=ln(x2+1)u = \ln(x^2 + 1) and v=xv = x. Then:

  1. u=2xx2+1u' = \frac{2x}{x^2 + 1}
  2. v=1v' = 1

Substituting in:

dydx=(2xx2+1)xln(x2+1)(1)x2\frac{dy}{dx} = \frac{\left(\frac{2x}{x^2 + 1}\right) x - \ln(x^2 + 1)(1)}{x^2}

Simplifying this further yields:

dydx=2x2x2+1ln(x2+1)x2\frac{dy}{dx} = \frac{\frac{2x^2}{x^2 + 1} - \ln(x^2 + 1)}{x^2}

Step 2

Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$

99%

104 rated

Answer

We start with the relationship x=tanyx = \tan y, which leads us to differentiate:

dxdy=sec2y\frac{dx}{dy} = \sec^2 y

Then, the relation:

dydx=1dxdy=1sec2y\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y}

This can also be expressed as:

dydx=cos2y1\frac{dy}{dx} = \frac{\cos^2 y}{1}

Recall the identity for tangent:

tan2y+1=sec2y\tan^2 y + 1 = \sec^2 y

Thus:

sec2y=1+tan2y=1+x2\sec^2 y = 1 + \tan^2 y = 1 + x^2

Therefore, we have:

dydx=11+x2\frac{dy}{dx} = \frac{1}{1 + x^2}, which completes the proof.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;