Photo AI

7. (a) Use the binomial expansion, in ascending powers of $x$, to show that $$\sqrt{(4 - x)} = 2 - \frac{1}{4} x + kx^{2} + ...$$ where $k$ is a rational constant to be found - Edexcel - A-Level Maths Pure - Question 11 - 2017 - Paper 2

Question icon

Question 11

7.-(a)-Use-the-binomial-expansion,-in-ascending-powers-of-$x$,-to-show-that--$$\sqrt{(4---x)}-=-2---\frac{1}{4}-x-+-kx^{2}-+-...$$--where-$k$-is-a-rational-constant-to-be-found-Edexcel-A-Level Maths Pure-Question 11-2017-Paper 2.png

7. (a) Use the binomial expansion, in ascending powers of $x$, to show that $$\sqrt{(4 - x)} = 2 - \frac{1}{4} x + kx^{2} + ...$$ where $k$ is a rational constant ... show full transcript

Worked Solution & Example Answer:7. (a) Use the binomial expansion, in ascending powers of $x$, to show that $$\sqrt{(4 - x)} = 2 - \frac{1}{4} x + kx^{2} + ...$$ where $k$ is a rational constant to be found - Edexcel - A-Level Maths Pure - Question 11 - 2017 - Paper 2

Step 1

Use the binomial expansion

96%

114 rated

Answer

To use the binomial expansion for (4x)\sqrt{(4 - x)}, first factor out the 4:

(4x)=4(1x4)=2(1x4)\sqrt{(4 - x)} = \sqrt{4(1 - \frac{x}{4})} = 2\sqrt{(1 - \frac{x}{4})}

Now use the binomial expansion formula:

(1+u)n=1+nu+n(n1)2!u2+... (1 + u)^{n} = 1 + nu + \frac{n(n-1)}{2!}u^{2} + ...

Here, set u=x4u = -\frac{x}{4} and n=12n = \frac{1}{2}:

(1x4)=112(x4)+1/2(1/21)2!(x4)2+...\sqrt{(1 - \frac{x}{4})} = 1 - \frac{1}{2}\cdot \left(-\frac{x}{4}\right) + \frac{1/2 (1/2 - 1)}{2!}\left(-\frac{x}{4}\right)^{2} + ...

This simplifies to:

1+18x1128x2+...1 + \frac{1}{8} x - \frac{1}{128} x^{2} + ...

Thus, substituting back gives:

(4x)=2(1+18x1128x2+...)=214x+kx2+...\sqrt{(4 - x)} = 2\left(1 + \frac{1}{8} x - \frac{1}{128} x^{2} + ...\right) = 2 - \frac{1}{4} x + kx^{2} + ...

where k=164k = -\frac{1}{64}.

Step 2

State if the expansion is valid for this value of $x$

99%

104 rated

Answer

The expansion is valid for x<4|x| < 4, which implies that x=1x = 1 can be used since it satisfies this condition. Therefore, the expansion is applicable.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;