Photo AI

3. (a) Find the value of $8^{\frac{1}{3}}$ (2) (b) Simplify fully $$\frac{\left(2x^{\frac{2}{3}}\right)^{3}}{4x^{-2}}$$ (3) - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 1

Question icon

Question 5

3.-(a)-Find-the-value-of-$8^{\frac{1}{3}}$-(2)---(b)-Simplify-fully---$$\frac{\left(2x^{\frac{2}{3}}\right)^{3}}{4x^{-2}}$$-(3)-Edexcel-A-Level Maths Pure-Question 5-2013-Paper 1.png

3. (a) Find the value of $8^{\frac{1}{3}}$ (2) (b) Simplify fully $$\frac{\left(2x^{\frac{2}{3}}\right)^{3}}{4x^{-2}}$$ (3)

Worked Solution & Example Answer:3. (a) Find the value of $8^{\frac{1}{3}}$ (2) (b) Simplify fully $$\frac{\left(2x^{\frac{2}{3}}\right)^{3}}{4x^{-2}}$$ (3) - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 1

Step 1

Find the value of $8^{\frac{1}{3}}$

96%

114 rated

Answer

To find the value of 8138^{\frac{1}{3}}, we can recognize that this represents the cube root of 8. Since 23=82^3 = 8, we find that:

813=28^{\frac{1}{3}} = 2

Thus, the final answer is:

813=28^{\frac{1}{3}} = 2

Step 2

Simplify fully $$\frac{\left(2x^{\frac{2}{3}}\right)^{3}}{4x^{-2}}$$

99%

104 rated

Answer

First, simplify the numerator:

(2x23)3=23(x23)3=8x2\left(2x^{\frac{2}{3}}\right)^{3} = 2^{3} \cdot \left(x^{\frac{2}{3}}\right)^{3} = 8x^{2}

Now we rewrite the entire expression:

8x24x2\frac{8x^{2}}{4x^{-2}}

Next, simplify the coefficients and use the properties of exponents:

84x2x2=2x2(2)=2x2+2=2x4\frac{8}{4} \cdot \frac{x^{2}}{x^{-2}} = 2 \cdot x^{2 - (-2)} = 2 \cdot x^{2 + 2} = 2x^{4}

Therefore, the fully simplified expression is:

2x42x^{4}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;