Photo AI

8. (i) Find the value of $$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^{r}$$ (ii) Show that $$\sum_{n=1}^{48} \log_{5}\left(\frac{n+2}{n+1}\right) = 2$$ - Edexcel - A-Level Maths Pure - Question 11 - 2019 - Paper 2

Question icon

Question 11

8.-(i)-Find-the-value-of----$$\sum_{r=4}^{\infty}-20-\times-\left(\frac{1}{2}\right)^{r}$$----(ii)-Show-that----$$\sum_{n=1}^{48}-\log_{5}\left(\frac{n+2}{n+1}\right)-=-2$$-Edexcel-A-Level Maths Pure-Question 11-2019-Paper 2.png

8. (i) Find the value of $$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^{r}$$ (ii) Show that $$\sum_{n=1}^{48} \log_{5}\left(\frac{n+2}{n+1}\right... show full transcript

Worked Solution & Example Answer:8. (i) Find the value of $$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^{r}$$ (ii) Show that $$\sum_{n=1}^{48} \log_{5}\left(\frac{n+2}{n+1}\right) = 2$$ - Edexcel - A-Level Maths Pure - Question 11 - 2019 - Paper 2

Step 1

Find the value of $$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^{r}$$

96%

114 rated

Answer

To solve the infinite series, we start with the formula for the sum of an infinite geometric series:

S=a1rS = \frac{a}{1 - r}

Here, the first term aa is given by:

a=20×(12)4=20×116=2016=54a = 20 \times \left(\frac{1}{2}\right)^{4} = 20 \times \frac{1}{16} = \frac{20}{16} = \frac{5}{4}

The common ratio rr is:

r=12r = \frac{1}{2}

So we can substitute these values into the formula:

S=54112=5412=54×2=104=2.5S = \frac{\frac{5}{4}}{1 - \frac{1}{2}} = \frac{\frac{5}{4}}{\frac{1}{2}} = \frac{5}{4} \times 2 = \frac{10}{4} = 2.5

Step 2

Show that $$\sum_{n=1}^{48} \log_{5}\left(\frac{n+2}{n+1}\right) = 2$$

99%

104 rated

Answer

Using the property of logarithms, we can rewrite the sum as:

n=148log5(n+2n+1)=n=148(log5(n+2)log5(n+1))\sum_{n=1}^{48} \log_{5}\left(\frac{n+2}{n+1}\right) = \sum_{n=1}^{48} \left( \log_{5}(n+2) - \log_{5}(n+1) \right)

This forms a telescoping series. Writing out the first few terms, we have:

  • For n=1n=1: log5(3)log5(2)\log_{5}(3) - \log_{5}(2)
  • For n=2n=2: log5(4)log5(3)\log_{5}(4) - \log_{5}(3)
  • For n=3n=3: log5(5)log5(4)\log_{5}(5) - \log_{5}(4)
  • Continue this pattern until n=48n=48: log5(50)log5(49)\log_{5}(50) - \log_{5}(49)

Notice how most of the terms cancel:

=(log5(50)log5(2))= \left(\log_{5}(50) - \log_{5}(2)\right)

This means:

n=148log5(n+2n+1)=log5(50)log5(2)=log5(502)=log5(25)\sum_{n=1}^{48} \log_{5}\left(\frac{n+2}{n+1}\right) = \log_{5}(50) - \log_{5}(2) = \log_{5}\left(\frac{50}{2}\right) = \log_{5}(25)

Since 25=5225 = 5^{2}, we have:

log5(25)=2\log_{5}(25) = 2

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;