Photo AI

8. (a) By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ (b) Given that \begin{equation} x = e^{sec \, y} \, , \, x > e, \, 0 < y < \frac{π}{2} \end{equation} show that \frac{dy}{dx} = \frac{1}{x \, g(x)} \, , \, x > e where g(x) is a function of ln x. - Edexcel - A-Level Maths Pure - Question 1 - 2018 - Paper 5

Question icon

Question 1

8.-(a)-By-writing-sec-θ-=--\frac{1}{cos-θ},-show-that--\frac{d}{dθ}(sec-θ)-=-sec-θ-tan-θ---(b)-Given-that--\begin{equation}-x-=-e^{sec-\,-y}-\,-,-\,-x->-e,-\,-0-<-y-<-\frac{π}{2}-\end{equation}-show-that--\frac{dy}{dx}-=-\frac{1}{x-\,-g(x)}-\,-,-\,-x->-e--where-g(x)-is-a-function-of-ln-x.-Edexcel-A-Level Maths Pure-Question 1-2018-Paper 5.png

8. (a) By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ (b) Given that \begin{equation} x = e^{sec \, y} \, , \, x > e, \, 0 < y ... show full transcript

Worked Solution & Example Answer:8. (a) By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ (b) Given that \begin{equation} x = e^{sec \, y} \, , \, x > e, \, 0 < y < \frac{π}{2} \end{equation} show that \frac{dy}{dx} = \frac{1}{x \, g(x)} \, , \, x > e where g(x) is a function of ln x. - Edexcel - A-Level Maths Pure - Question 1 - 2018 - Paper 5

Step 1

By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ

96%

114 rated

Answer

To differentiate sec θ, we apply the chain rule:

secθ=1cosθsec \, θ = \frac{1}{cos \, θ}

Letting u = cos θ, we have sec θ = u^{-1}. Thus,

ddθ(secθ)=ddθ(u1)u2dudθ\frac{d}{dθ}(sec \, θ) = \frac{d}{dθ}(u^{-1}) \to -u^{-2}\frac{du}{dθ}

Now, differentiating cos θ gives:

dudθ=sinθ\frac{du}{dθ} = -sin \, θ

Substituting we get:

ddθ(secθ)=sinθ(cosθ)2=sinθcos2θ\frac{d}{dθ}(sec \, θ) = -\frac{-sin \, θ}{(cos \, θ)^{2}} = \frac{sin \, θ}{cos^{2} \, θ}

And recognizing that:

tanθ=sinθcosθtan \, θ = \frac{sin \, θ}{cos \, θ}

We can express this as:

ddθ(secθ)=secθtanθ\frac{d}{dθ}(sec \, θ) = sec \, θ tan \, θ

Step 2

Given that x = e^{sec \, y} , x > e, 0 < y < \frac{π}{2} show that \frac{dy}{dx} = \frac{1}{x \, g(x)} , x > e where g(x) is a function of ln x.

99%

104 rated

Answer

Starting with the equation:

x=esecyx = e^{sec \, y}

we take the natural logarithm of both sides:

lnx=secyln \, x = sec \, y

Differentiating both sides with respect to x gives:

1x=dydxsecy\frac{1}{x} = \frac{dy}{dx} sec \, y

Next, we rewrite sec y in terms of tan y:

Using the identity: sec2y1=tan2ysec^{2} y - 1 = tan^{2} y, we know:

secy=1+tan2ysec \, y = \sqrt{1 + tan^{2} \, y}

Substituting this into our derivative gives:

dydx=1xsecy\frac{dy}{dx} = \frac{1}{x sec \, y}

Now we express g(x):

g(x)=secy=(lnx)21g(x) = sec \, y = \sqrt{(ln \, x)^{2} - 1}

Thus:

dydx=1xg(x)\frac{dy}{dx} = \frac{1}{x g(x)}

This proves the required relationship.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;