Photo AI

Simplify (a) $(2 \sqrt{5})^2$ (b) $\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}}$ giving your answer in the form $a + \sqrt{b}$, where $a$ and $b$ are integers. - Edexcel - A-Level Maths Pure - Question 5 - 2015 - Paper 1

Question icon

Question 5

Simplify--(a)-$(2-\sqrt{5})^2$--(b)-$\frac{\sqrt{2}}{2\sqrt{5}---3\sqrt{2}}$-giving-your-answer-in-the-form-$a-+-\sqrt{b}$,-where-$a$-and-$b$-are-integers.-Edexcel-A-Level Maths Pure-Question 5-2015-Paper 1.png

Simplify (a) $(2 \sqrt{5})^2$ (b) $\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}}$ giving your answer in the form $a + \sqrt{b}$, where $a$ and $b$ are integers.

Worked Solution & Example Answer:Simplify (a) $(2 \sqrt{5})^2$ (b) $\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}}$ giving your answer in the form $a + \sqrt{b}$, where $a$ and $b$ are integers. - Edexcel - A-Level Maths Pure - Question 5 - 2015 - Paper 1

Step 1

(a) $(2 \sqrt{5})^2$

96%

114 rated

Answer

To simplify (25)2(2 \sqrt{5})^2, we can apply the property of exponents that states (ab)2=a2b2(ab)^2 = a^2b^2. Therefore:

(25)2=22(5)2=45=20.(2 \sqrt{5})^2 = 2^2 \cdot (\sqrt{5})^2 = 4 \cdot 5 = 20.

Thus, the answer for part (a) is 2020.

Step 2

(b) $\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}}$ giving your answer in the form $a + \sqrt{b}$, where $a$ and $b$ are integers.

99%

104 rated

Answer

To simplify the expression 22532\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}}, we first multiply the numerator and denominator by the conjugate of the denominator:

2253225+3225+32.\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \cdot \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}.

This results in:

2(25+32)(25)2(32)2.\frac{\sqrt{2}(2\sqrt{5} + 3\sqrt{2})}{(2\sqrt{5})^2 - (3\sqrt{2})^2}.

We know that (25)2=45=20(2\sqrt{5})^2 = 4 \cdot 5 = 20 and (32)2=92=18(3\sqrt{2})^2 = 9 \cdot 2 = 18. Therefore, the denominator simplifies to:

2018=2.20 - 18 = 2.

Now, substituting back, we get:

2(25+32)2=122(25+32).\frac{\sqrt{2}(2\sqrt{5} + 3\sqrt{2})}{2} = \frac{1}{2} \cdot \sqrt{2}(2\sqrt{5} + 3\sqrt{2}).

Distributing the 2\sqrt{2} gives:

2252+322=10+3.\frac{\sqrt{2} \cdot 2\sqrt{5}}{2} + \frac{3 \cdot 2}{2} = \sqrt{10} + 3.

Thus, the answer for part (b) is 3+103 + \sqrt{10}, where a=3a=3 and b=10b=10.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;