Photo AI

f(x) = (3 + 2x)^{-3}, |x| < \frac{1}{2} - Edexcel - A-Level Maths Pure - Question 3 - 2007 - Paper 7

Question icon

Question 3

f(x)-=-(3-+-2x)^{-3},--|x|-<-\frac{1}{2}-Edexcel-A-Level Maths Pure-Question 3-2007-Paper 7.png

f(x) = (3 + 2x)^{-3}, |x| < \frac{1}{2}. Find the binomial expansion of f(x), in ascending powers of x, as far as the term in x^3. Give each coefficient as a simp... show full transcript

Worked Solution & Example Answer:f(x) = (3 + 2x)^{-3}, |x| < \frac{1}{2} - Edexcel - A-Level Maths Pure - Question 3 - 2007 - Paper 7

Step 1

Find the binomial expansion of f(x)

96%

114 rated

Answer

To begin, rewrite f(x):

f(x)=(3+2x)3f(x) = (3 + 2x)^{-3}

We can factor out the constant 3 from the binomial:

f(x)=33(1+2x3)3f(x) = 3^{-3} (1 + \frac{2x}{3})^{-3}

So, we have:

f(x)=127(1+2x3)3f(x) = \frac{1}{27} (1 + \frac{2x}{3})^{-3}

Now, using the Binomial Theorem:

(1+u)n=k=0(nk)uk(1 + u)^n = \sum_{k=0}^{\infty} \binom{n}{k} u^k

for our expression:

  • Let u=2x3u = \frac{2x}{3} and n=3n = -3.

Step 2

Expand up to the term in x^3

99%

104 rated

Answer

Now, we calculate the first few terms of the expansion:

f(x)=127((30)(2x3)0+(31)(2x3)1+(32)(2x3)2+(33)(2x3)3+)f(x) = \frac{1}{27} \left(\binom{-3}{0}(\frac{2x}{3})^0 + \binom{-3}{1}(\frac{2x}{3})^1 + \binom{-3}{2}(\frac{2x}{3})^2 + \binom{-3}{3}(\frac{2x}{3})^3 + \ldots \right)

Calculating the coefficients:

  • For k=0k=0: (30)=1\binom{-3}{0} = 1
  • For k=1k=1: (31)=3\binom{-3}{1} = -3
  • For k=2k=2: (32)=(3)(4)2!=6\binom{-3}{2} = \frac{(-3)(-4)}{2!} = 6
  • For k=3k=3: (33)=(3)(4)(5)3!=10\binom{-3}{3} = \frac{(-3)(-4)(-5)}{3!} = -10

Substituting these values back into the expansion gives:

f(x)=127(132x3+6(2x3)210(2x3)3)f(x) = \frac{1}{27} \left( 1 - 3 \cdot \frac{2x}{3} + 6 \cdot \left(\frac{2x}{3}\right)^2 - 10 \cdot \left(\frac{2x}{3}\right)^3 \right)

Step 3

Final simplification

96%

101 rated

Answer

Calculating the terms gives:

  • Constant term: 127\frac{1}{27}
  • Linear term: 2x-2x
  • Quadratic term: 8x227\frac{8x^2}{27}
  • Cubic term: 80x327-\frac{80x^3}{27}

Combining everything, the final result will be:

f(x)=1272x+827x28027x3+f(x) = \frac{1}{27} - 2x + \frac{8}{27}x^2 - \frac{80}{27}x^3 + \ldots

Each coefficient has been simplified as fractional values.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;