Photo AI

5. (a) Use the binomial theorem to expand $(2-3x)^2$, $|x|<\frac{2}{3}$ - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 6

Question icon

Question 7

5.-(a)-Use-the-binomial-theorem-to-expand---$(2-3x)^2$,---$|x|<\frac{2}{3}$-Edexcel-A-Level Maths Pure-Question 7-2011-Paper 6.png

5. (a) Use the binomial theorem to expand $(2-3x)^2$, $|x|<\frac{2}{3}$. Give each coefficient as a simplified fraction. $f(x)=\frac{a+bx}{(2-3x)^2}$, where $... show full transcript

Worked Solution & Example Answer:5. (a) Use the binomial theorem to expand $(2-3x)^2$, $|x|<\frac{2}{3}$ - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 6

Step 1

Use the binomial theorem to expand $(2-3x)^2$

96%

114 rated

Answer

To expand (23x)2(2-3x)^2, we apply the binomial theorem:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Here, with a=2a = 2, b=3xb = -3x, and n=2n = 2:

(2-3x)^2 = 2^2 + \binom{2}{1}(2)^{-3x}^1 + \binom{2}{2}(3x)^2

Calculating:

  • First term: 22=42^2 = 4
  • Second term: (21)(2)(3x)=6x\binom{2}{1} (2)(-3x) = -6x
  • Third term: (22)(3x)2=9x2\binom{2}{2}(-3x)^2 = 9x^2

Thus, the expansion is:

(23x)2=46x+9x2(2-3x)^2 = 4 - 6x + 9x^2

Step 2

Find the values of $a$ and $b$

99%

104 rated

Answer

We have:

f(x)=a+bx(23x)2f(x) = \frac{a + bx}{(2-3x)^2}

To maintain the coefficient of xx as zero, we need:

  1. For the linear term: a+b0=0a + b \cdot 0 = 0, which implies that b=2716b = -\frac{27}{16}.
  2. The condition for x2x^2: a+b2716=916a + b \cdot \frac{27}{16} = \frac{9}{16}.

Substituting bb:

a2716=916a - \frac{27}{16}=\frac{9}{16}

Solving for aa gives:

a=3616=94 a = \frac{36}{16} = \frac{9}{4}

Thus,:

  • Value of a=94a = \frac{9}{4}
  • Value of b=2716b = -\frac{27}{16}

Step 3

Find the coefficient of $x^3$

96%

101 rated

Answer

From the expansion:

(23x)2=46x+9x2(2-3x)^2 = 4 - 6x + 9x^2

We can deduce that to find the coefficient of x3x^3, we focus on the cubic term in a similar expansion:

The coefficient is obtained from:

3a16+b2716\frac{3a}{16} + \frac{b \cdot 27}{16}

Calculating:

  • Substitute a=94a = \frac{9}{4} and b=2716b = -\frac{27}{16}:

3(9/4)16+(27/16)2716\frac{3(9/4)}{16} + \frac{(-27/16) \cdot 27}{16}

This simplifies to:

  • For the term 3a3a: 2764\frac{27}{64}
  • For the term 27b27b: 729256\frac{-729}{256}

Combining gives:

2764729256=ST \frac{27}{64} - \frac{729}{256} = \frac{S}{T} (final simplified fraction)

Thus, the coefficient of x3x^3 is: 2716\frac{27}{16}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;