Photo AI

Figure 3 shows a sketch of the curve C with parametric equations x = 4 overline{cos} igg( t + rac{ ext{π}}{6} igg), y = 2 ext{sint}, ext{where } 0 < t < 2 ext{π} - Edexcel - A-Level Maths Pure - Question 2 - 2014 - Paper 8

Question icon

Question 2

Figure-3-shows-a-sketch-of-the-curve-C-with-parametric-equations---x-=-4-overline{cos}-igg(-t-+--rac{-ext{π}}{6}-igg),-y-=-2-ext{sint},---ext{where-}-0-<-t-<-2-ext{π}-Edexcel-A-Level Maths Pure-Question 2-2014-Paper 8.png

Figure 3 shows a sketch of the curve C with parametric equations x = 4 overline{cos} igg( t + rac{ ext{π}}{6} igg), y = 2 ext{sint}, ext{where } 0 < t < 2 ext... show full transcript

Worked Solution & Example Answer:Figure 3 shows a sketch of the curve C with parametric equations x = 4 overline{cos} igg( t + rac{ ext{π}}{6} igg), y = 2 ext{sint}, ext{where } 0 < t < 2 ext{π} - Edexcel - A-Level Maths Pure - Question 2 - 2014 - Paper 8

Step 1

Show that $x + y = 2 ext{√3 cos t}$

96%

114 rated

Answer

To prove that x+y=2ext3costx + y = 2 ext{√3 cos t}, we first express xx and yy using the given parametric equations:

x = 4 ext{cos}igg(t + rac{ ext{π}}{6}igg) y=2extsinty = 2 ext{sint}

Next, we expand the cosine term using the angle addition formula:

x = 4igg( ext{cos}igg(t + rac{ ext{π}}{6}igg) = ext{cos}(t) ext{cos}igg( rac{ ext{π}}{6}igg) - ext{sin}(t) ext{sin}igg( rac{ ext{π}}{6}igg)\ Using known values, we find:

ext{cos}igg( rac{ ext{π}}{6}igg) = rac{ ext{√3}}{2} ext{ and } ext{sin}igg( rac{ ext{π}}{6}igg) = rac{1}{2}

This simplifies to:

x = 4igg( ext{cos}(t) rac{ ext{√3}}{2} - ext{sin}(t) rac{1}{2}igg)\ Then, x = 2 ext{√3 cos t} - 2 ext{sin t}$$

Now, we substitute this expression for xx into the equation x+yx + y:

x + y = 2 ext{√3 cos t} - 2 ext{sin t} + 2 ext{sin t}\ This results in: x+y=2ext3costx + y = 2 ext{√3 cos t}

Thus, we have shown the required relationship.

Step 2

Show that a cartesian equation of C is $(x + y)^{2} + ay^{2} = b$

99%

104 rated

Answer

To derive the Cartesian equation, we start with the expressions for xx and yy:

x = 4 ext{cos}igg(t + rac{ ext{π}}{6}igg) y=2extsinty = 2 ext{sint}

First, square both equations:

(x)^2 = igg(4 ext{cos}igg(t + rac{ ext{π}}{6}igg)igg)^2 = 16 ext{cos}^{2}igg(t + rac{ ext{π}}{6}igg) (y)2=(2extsint)2=4extsint2(y)^2 = (2 ext{sint})^2 = 4 ext{sint}^{2}

To express things in terms of (x+y)(x+y), we can write:

(x+y)2=x2+2xy+y2(x + y)^2 = x^2 + 2xy + y^2

yields:

From earlier calculations, we have: 16 ext{cos}^{2}igg(t + rac{ ext{π}}{6}igg) + 4 ext{sint}^{2} = 12 To find aa and bb, organize the equation:

(x+y)2+3y2=12(x+y)^{2} + 3y^{2} = 12

From this comparison, we have a=3a = 3 and b=12b = 12. Thus, we conclude that a Cartesian equation for the curve is: (x+y)2+3y2=12.(x + y)^{2} + 3y^{2} = 12.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;