Photo AI

10. In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 11 - 2021 - Paper 1

Question icon

Question 11

10.-In-this-question-you-should-show-all-stages-of-your-working-Edexcel-A-Level Maths Pure-Question 11-2021-Paper 1.png

10. In this question you should show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. (a) Given that $1 + ext{co... show full transcript

Worked Solution & Example Answer:10. In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 11 - 2021 - Paper 1

Step 1

Given that $1 + \text{cos} 2\theta + \text{sin} 2\theta \neq 0$ prove that $\frac{1 - \text{cos} 2\theta + \text{sin} 2\theta}{1 + \text{cos} 2\theta + \text{sin} 2\theta} = \tan \theta$

96%

114 rated

Answer

To prove this equation, we will use the double angle formulas for sine and cosine:

sin2θ=2sinθcosθ\text{sin} 2\theta = 2 \text{sin} \theta \text{cos} \theta
cos2θ=2cos2θ1\text{cos} 2\theta = 2\text{cos}^2 \theta - 1

Substituting these into the left-hand side:

1(2cos2θ1)+2sinθcosθ1+(2cos2θ1)+2sinθcosθ\frac{1 - (2\text{cos}^2 \theta - 1) + 2\text{sin} \theta \text{cos} \theta}{1 + (2\text{cos}^2 \theta - 1) + 2\text{sin} \theta \text{cos} \theta}

This simplifies to:

22cos2θ+2sinθcosθ2cos2θ+2sinθcosθ\frac{2 - 2\text{cos}^2 \theta + 2\text{sin} \theta \text{cos} \theta}{2\text{cos}^2 \theta + 2\text{sin} \theta \text{cos} \theta}

Factor out the common terms:

2(1cos2θ+sinθcosθ)2(cos2θ+sinθcosθ)\frac{2(1 - \text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta)}{2(\text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta)}

Finally, recognizing that 1cos2θ=sin2θ1 - \text{cos}^2 \theta = \text{sin}^2 \theta, we have:

sin2θ+sinθcosθcos2θ+sinθcosθ=tanθ\frac{\text{sin}^2 \theta + \text{sin} \theta \text{cos} \theta}{\text{cos}^2 \theta + \text{sin} \theta \text{cos} \theta} = \tan \theta.

Step 2

Hence solve, for $0 < x < 180^{\circ}$, $\frac{1 - \text{cos} 4x + \text{sin} 4x}{1 + \text{cos} 4x + \text{sin} 4x} = 3 \sin 2x$

99%

104 rated

Answer

Utilizing the proven result from part (a), we can replace the left-hand side similarly:

1cos4x+sin4x1+cos4x+sin4x=tan(2x)\frac{1 - \text{cos} 4x + \text{sin} 4x}{1 + \text{cos} 4x + \text{sin} 4x} = \tan(2x)
This gives us:

tan(2x)=3sin(2x)\tan(2x) = 3 \sin(2x)

Now, we can rewrite the equation using the identity for tangent:

sin(2x)cos(2x)=3sin(2x)\frac{\sin(2x)}{\cos(2x)} = 3 \sin(2x)

Assuming sin(2x)0\sin(2x) \neq 0, we can divide both sides by sin(2x)\sin(2x), giving:

1cos(2x)=3\frac{1}{\cos(2x)} = 3

This implies:

cos(2x)=13\cos(2x) = \frac{1}{3}

To find 2x2x, we take the inverse cosine:

2x=cos1(13)2x = \cos^{-1}(\frac{1}{3})

This yields two solutions within the restriction 0<2x<3600 < 2x < 360^{\circ}:

  1. 2x=cos1(13)2x = \cos^{-1}(\frac{1}{3})
  2. 2x=360cos1(13)2x = 360^{\circ} - \cos^{-1}(\frac{1}{3})

Consequently, solving for xx gives:

  1. x=cos1(13)2x = \frac{\cos^{-1}(\frac{1}{3})}{2}
  2. x=180cos1(13)2x = 180^{\circ} - \frac{\cos^{-1}(\frac{1}{3})}{2}

Calculating these, we find:

  • x35.3x \approx 35.3^{\circ}
  • x144.7x \approx 144.7^{\circ}

Thus, to one decimal place, the answers are:

  1. x35.3x \approx 35.3^{\circ}
  2. x144.7x \approx 144.7^{\circ}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;