Photo AI

8. (a) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of \[ \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} \, dx \] (b) Using your answer to part (a), find the exact volume of the solid of revolution formed. - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 6

Question icon

Question 2

8.-(a)-Using-the-substitution-$x-=-2-\cos-u$,-or-otherwise,-find-the-exact-value-of--\[-\int_1^{\sqrt{2}}-\frac{1}{x^2-\sqrt{4-x^2}}-\,-dx-\]--(b)-Using-your-answer-to-part-(a),-find-the-exact-volume-of-the-solid-of-revolution-formed.-Edexcel-A-Level Maths Pure-Question 2-2010-Paper 6.png

8. (a) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of \[ \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} \, dx \] (b) Using your answer ... show full transcript

Worked Solution & Example Answer:8. (a) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of \[ \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} \, dx \] (b) Using your answer to part (a), find the exact volume of the solid of revolution formed. - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 6

Step 1

Using the substitution $x = 2 \cos u$

96%

114 rated

Answer

We start with the integral:

[ I = \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} , dx ]

Using the substitution x=2cosux = 2 \cos u, we have: [ dx = -2 \sin u , du ]

The limits of integration change:

  • When x=1x=1, u=π4u=\frac{\pi}{4}
  • When x=2x=\sqrt{2}, u=π3u=\frac{\pi}{3}

Now substituting in the integral gives:
[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{(2 \cos u)^2 \sqrt{4 - (2 \cos u)^2}} , du ]

This simplifies to: [ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{4 \cos^2 u \sqrt{4(1 - \cos^2 u)}} , du ]

Knowing that 4(1cos2u)=2sinu\sqrt{4(1 - \cos^2 u)} = 2 \sin u gives us: [ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{4 \cos^2 u , 2 \sin u} , du = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-1}{2 \cos^2 u} , du ]

This leads to:
[ I = -\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 u , du ]

Calculating the integral: [ I = -\frac{1}{2} \left[ \tan u \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\frac{1}{2}\left(\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{\pi}{4}\right)\right) = -\frac{1}{2}(\sqrt{3} - 1) = \frac{1 - \sqrt{3}}{2} ]

Step 2

Finding the volume of the solid of revolution

99%

104 rated

Answer

Using the result from part (a), the volume VV of the solid of revolution can be found using the formula: [ V = \pi \int_a^b f(x)^2 , dx ]

For our case: [ V = 2\pi \cdot \frac{-1}{2} \cdot \left(\sqrt{2}-1\right) = -\pi(1-\sqrt{2}) = \frac{\pi(\sqrt{2}-1)}{4} ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;