Photo AI

With respect to a fixed origin O, the line l_1 is given by the equation $$ r = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} $$ where \( \mu \) is a scalar parameter - Edexcel - A-Level Maths Pure - Question 2 - 2016 - Paper 4

Question icon

Question 2

With-respect-to-a-fixed-origin-O,-the-line-l_1-is-given-by-the-equation--$$-r-=-\begin{pmatrix}-8-\\-1-\\--3-\end{pmatrix}-+-\mu-\begin{pmatrix}--5-\\-4-\\-3-\end{pmatrix}-$$-where-\(-\mu-\)-is-a-scalar-parameter-Edexcel-A-Level Maths Pure-Question 2-2016-Paper 4.png

With respect to a fixed origin O, the line l_1 is given by the equation $$ r = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pm... show full transcript

Worked Solution & Example Answer:With respect to a fixed origin O, the line l_1 is given by the equation $$ r = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} $$ where \( \mu \) is a scalar parameter - Edexcel - A-Level Maths Pure - Question 2 - 2016 - Paper 4

Step 1

a) Find the coordinates of A.

96%

114 rated

Answer

To find the coordinates of point A, substitute ( \mu = 1 ) into the equation of line l_1:

A=(813)+1(543)=(350)A = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + 1 \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix}

Thus, the coordinates of A are ( (3, 5, 0) ).

Step 2

b) Write down a vector equation for the line l_2.

99%

104 rated

Answer

The line l_2 passes through point P and is parallel to line l_1. Therefore, the vector equation for line l_2 can be written as:

l2:r=(152)+λ(543)l_2: \quad r = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} where ( \lambda ) is a scalar parameter.

Step 3

c) Find the exact value of the distance AP.

96%

101 rated

Answer

The distance AP can be calculated using the distance formula:

AP=(x2x1)2+(y2y1)2+(z2z1)2AP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}

Substituting the coordinates of points A and P:

AP=(31)2+(55)2+(02)2=(2)2+(0)2+(2)2=4+0+4=8=22.AP = \sqrt{(3 - 1)^2 + (5 - 5)^2 + (0 - 2)^2} = \sqrt{(2)^2 + (0)^2 + (-2)^2} = \sqrt{4 + 0 + 4} = \sqrt{8} = 2\sqrt{2}.

Thus, the value of k is 2.

Step 4

d) Find the value of cosθ.

98%

120 rated

Answer

To find ( \cos \theta ), where ( \theta ) is the angle between vectors AP and l_1, we use the dot product:

cosθ=APDAPD\cos \theta = \frac{AP \cdot D}{|AP| |D|}

Where D is the direction vector of line l_1, ( D = \begin{pmatrix} -5 \ 4 \ 3 \end{pmatrix} ).

Thus:

AP=(202)AP = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}

Calculating the dot product:

APD=(2)(5)+(0)(4)+(2)(3)=106=16.AP \cdot D = (2)(-5) + (0)(4) + (-2)(3) = -10 - 6 = -16.

The magnitudes are:

AP=22,D=(5)2+(4)2+(3)2=25+16+9=50=52.|AP| = 2\sqrt{2}, \quad |D| = \sqrt{(-5)^2 + (4)^2 + (3)^2} = \sqrt{25 + 16 + 9} = \sqrt{50} = 5\sqrt{2}.

Calculating ( \cos \theta ):

cosθ=16(22)(52)=1620=0.8.\cos \theta = \frac{-16}{(2\sqrt{2})(5\sqrt{2})} = \frac{-16}{20} = -0.8.

Step 5

e) Find the area of triangle APE.

97%

117 rated

Answer

The area of triangle APE can be found using:

Area=12×base×heightArea = \frac{1}{2} \times base \times height

Using the distance AP as the base and height based on the sine of the angle between AP and l_2:

Thus,

Area=12×22×AP×sinθ=12×22×2.4=2.4.Area = \frac{1}{2} \times 2\sqrt{2} \times |AP| \times sin \theta = \frac{1}{2} \times 2\sqrt{2} \times 2.4 = 2.4.

Step 6

f) find the coordinates of the two possible positions of E.

97%

121 rated

Answer

The coordinates of point E can be found knowing that the distance AP equals PE. Therefore, we can set:

PE=(543)λPE = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \lambda

Thus,

Position 1: ( E = A + \begin{pmatrix} -5 \ 4 \ 3 \end{pmatrix} \lambda_1 )

Position 2: ( E = A - \begin{pmatrix} -5 \ 4 \ 3 \end{pmatrix} \lambda_2 )

Calculating these will yield the two positions for E.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;