Photo AI

Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2007 - Paper 8

Question icon

Question 4

Find-\(-\int-x-\cos-2x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 4-2007-Paper 8.png

Find \( \int x \cos 2x \, dx \). Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^3 x \, dx \.

Worked Solution & Example Answer:Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2007 - Paper 8

Step 1

Find \( \int x \cos 2x \, dx \)

96%

114 rated

Answer

To find ( \int x \cos 2x , dx ), we will use integration by parts, which is expressed as:

[ \int u , dv = uv - \int v , du ]

Here, let:

  • ( u = x ) and hence ( du = dx )
  • ( dv = \cos 2x , dx ) and consequently ( v = \frac{1}{2} \sin 2x )

Substituting these into the integration by parts formula:

[ \int x \cos 2x , dx = x \cdot \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x , dx ]

Calculating the integral:

[ \int \sin 2x , dx = -\frac{1}{2} \cos 2x + C ]

Thus, we have:

[ \int x \cos 2x , dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C ]

Step 2

Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^3 x \, dx \)

99%

104 rated

Answer

Using the identity ( \cos 2x = 2 \cos^2 x - 1 ), we have:

[ \int x \cos^3 x , dx = \int x \cos x \cdot \cos^2 x , dx = \int x \cos x \cdot \frac{1 + \cos 2x}{2} , dx ]

Thus:

[ = \frac{1}{2} \int x \cos x , dx + \frac{1}{2} \int x \cos x \cdot \cos 2x , dx ]

We already found ( \int x \cos 2x , dx ) in part (a). Hence:

[ = \frac{1}{2} \left( \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C \right) ]

The deduction yields:

[ \int x \cos^3 x , dx = \frac{1}{4} x \sin 2x + \frac{1}{8} \cos 2x + C ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;