Photo AI

Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$ - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 6

Question icon

Question 3

Given-that-$y-=-\frac{1}{4-+-\sqrt{(x-1)}}$,-complete-the-table-below-with-values-of-$y$-corresponding-to-$x-=-3$-and-$x-=-5$-Edexcel-A-Level Maths Pure-Question 3-2011-Paper 6.png

Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$. Give your values to 4 decimal places. ... show full transcript

Worked Solution & Example Answer:Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$ - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 6

Step 1

Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of $y$ corresponding to $x = 3$ and $x = 5$. Give your values to 4 decimal places.

96%

114 rated

Answer

To calculate the values of yy for x=3x = 3 and x=5x = 5, we substitute these values into the function:

  1. For x=3x = 3:

    y=14+(31)=14+20.1847y = \frac{1}{4 + \sqrt{(3-1)}} = \frac{1}{4 + \sqrt{2}} \approx 0.1847

    Therefore, when x=3x = 3, y0.1847y \approx 0.1847.

  2. For x=5x = 5:

    y=14+(51)=14+4=14+2=160.1667y = \frac{1}{4 + \sqrt{(5-1)}} = \frac{1}{4 + \sqrt{4}} = \frac{1}{4 + 2} = \frac{1}{6} \approx 0.1667

    Therefore, when x=5x = 5, y0.1667y \approx 0.1667.

Step 2

Use the trapezium rule, with all of the values of $y$ in the completed table, to obtain an estimate of $I$, giving your answer to 3 decimal places.

99%

104 rated

Answer

Using the trapezium rule, we can estimate the integral I=25f(x)dxI = \int_{2}^{5} f(x) \, dx as follows:

I12×(ba)×(y0+yn)+(y1+y2+y3)I \approx \frac{1}{2} \times (b-a) \times (y_0 + y_n) + (y_1 + y_2 + y_3)

Where:

  • y0=0.2y_0 = 0.2 (for x=2x = 2)
  • y10.1847y_1 \approx 0.1847 (for x=3x = 3)
  • y20.1745y_2 \approx 0.1745 (for x=4x = 4)
  • y30.1667y_3 \approx 0.1667 (for x=5x = 5)

Calculating the estimate:

I12×(52)×(0.2+0.1667+0.1847+0.1745)I \approx \frac{1}{2} \times (5 - 2) \times (0.2 + 0.1667 + 0.1847 + 0.1745) I32×(0.7260)=1.0890I \approx \frac{3}{2} \times (0.7260) = 1.0890

Thus, the estimated value of II is approximately 1.0891.089.

Step 3

Using the substitution $x = (u-4)^{2} + 1$, or otherwise, and integrating, find the exact value of $I$.

96%

101 rated

Answer

To evaluate the integral I=2514+(x1)dxI = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} \, dx, we make the substitution x=(u4)2+1x = (u-4)^{2} + 1, which implies:

dx=2(u4)dudx = 2(u-4) \, du

Now we re-evaluate the bounds:

  • When x=2x = 2, u=3u = 3;
  • When x=5x = 5, u=5u = 5.

Substituting into the integral, we have:

I=352(u4)4+((u4)2+11)du=352(u4)uduI = \int_{3}^{5} \frac{2(u-4)}{4 + \sqrt{((u-4)^{2}+1-1)}} \, du = \int_{3}^{5} \frac{2(u-4)}{\sqrt{u}} \, du

Evaluating yields:

=235(2u8)du=2[u228u]35=[(2540)(4.524)]=2+8(536)=32(25125)=2+86=2+43=2.667= 2 \int_{3}^{5} (2u - 8) \, du = 2 \left[\frac{u^2}{2} - 8u\right]_{3}^{5} = \left[(25 - 40) - (4.5 - 24)\right] = 2 + 8 \left(\frac{5 - 3}{6}\right) = \frac{3}{2} (\frac{25 -12}{5}) = 2 + \frac{8}{6} = 2 + \frac{4}{3} = 2.667

Thus, the exact value of II is:

I=2+43=103I = 2 + \frac{4}{3} = \frac{10}{3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;