Photo AI

Use integration to find $$\int \frac{1}{x^3} \ln x \, dx$$ (b) Hence calculate $$\int_1^2 \frac{1}{x^3} \ln x \, dx$$ - Edexcel - A-Level Maths Pure - Question 14 - 2013 - Paper 1

Question icon

Question 14

Use-integration-to-find-$$\int-\frac{1}{x^3}-\ln-x-\,-dx$$--(b)-Hence-calculate-$$\int_1^2-\frac{1}{x^3}-\ln-x-\,-dx$$-Edexcel-A-Level Maths Pure-Question 14-2013-Paper 1.png

Use integration to find $$\int \frac{1}{x^3} \ln x \, dx$$ (b) Hence calculate $$\int_1^2 \frac{1}{x^3} \ln x \, dx$$

Worked Solution & Example Answer:Use integration to find $$\int \frac{1}{x^3} \ln x \, dx$$ (b) Hence calculate $$\int_1^2 \frac{1}{x^3} \ln x \, dx$$ - Edexcel - A-Level Maths Pure - Question 14 - 2013 - Paper 1

Step 1

Use integration to find $$\int \frac{1}{x^3} \ln x \, dx$$

96%

114 rated

Answer

To solve the integral, we will use integration by parts. Let:

u=lnxdu=1xdxu = \ln x \quad \Rightarrow \quad du = \frac{1}{x} \, dx
dv=1x3dxv=12x2dv = \frac{1}{x^3} \, dx \quad \Rightarrow \quad v = -\frac{1}{2x^2}

Applying integration by parts:

udv=uvvdu\int u \, dv = uv - \int v \, du

Substituting into the formula, we get:

=12x2lnx12x21xdx= -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} \, dx =12x2lnx+121x3dx= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} \, dx

Now, calculate 1x3dx\int \frac{1}{x^3} \, dx:

=12x2+C= -\frac{1}{2x^2} + C

So, the full integral becomes:

=12x2lnx+14x2+C= -\frac{1}{2x^2} \ln x + \frac{1}{4x^2} + C in simplified form.

Step 2

Hence calculate $$\int_1^2 \frac{1}{x^3} \ln x \, dx$$

99%

104 rated

Answer

Now, we can use the previous result to evaluate the definite integral:

121x3lnxdx=[12x2lnx+14x2]12\int_1^2 \frac{1}{x^3} \ln x \, dx = \left[ -\frac{1}{2x^2} \ln x + \frac{1}{4x^2} \right]_1^2

Calculating the limit at 2:

=12(22)ln(2)+14(22)= -\frac{1}{2(2^2)} \ln(2) + \frac{1}{4(2^2)} =18ln(2)+116= -\frac{1}{8} \ln(2) + \frac{1}{16}

Calculating the limit at 1:

=12(12)ln(1)+14(12)= -\frac{1}{2(1^2)} \ln(1) + \frac{1}{4(1^2)} =0+14= 0 + \frac{1}{4}

Subtracting these results:

=(18ln(2)+116)(0+14)= \left(-\frac{1}{8} \ln(2) + \frac{1}{16}\right) - \left(0 + \frac{1}{4}\right)

Resulting in:

=18ln(2)+116416= -\frac{1}{8} \ln(2) + \frac{1}{16} - \frac{4}{16} =18ln(2)316= -\frac{1}{8} \ln(2) - \frac{3}{16}

This gives us the final computed value for the definite integral.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;