Photo AI
Question 2
8. (a) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of \( \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4 - x^2}} \, dx \) (b) Using your answer... show full transcript
Step 1
Answer
To solve the integral ( \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4 - x^2}} , dx ), we start by applying the substitution:
Let ( x = 2 \cos u ). Thus, ( dx = -2 \sin u , du ).
The limits of integration change as follows:
Replacing ( x ) gives us: [ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{(2 \cos u)^2 \sqrt{4 - (2 \cos u)^2}} , du ] Simplifying this results in: [ = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{4 \cos^2 u \sqrt{4(1 - \cos^2 u)}} , du ] [ = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{4 \cos^2 u \cdot 2 \sin u} , du = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-1}{\cos^2 u} , du ] Recognizing that ( \frac{1}{\cos^2 u} = \sec^2 u ), we have: [ = -\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 u , du = -[\tan u]_{\frac{\pi}{4}}^{\frac{\pi}{3}} ] Evaluating this gives: [ = -\left( \tan \frac{\pi}{3} - \tan \frac{\pi}{4} \right) = -\left( \sqrt{3} - 1 \right) = 1 - \sqrt{3} ]
Step 2
Answer
Using the result from part (a), we can find the volume, ( V ), of the solid formed by rotating region ( S ) about the x-axis. The formula for the volume of revolution is given by: [ V = \pi \int_a^b [f(x)]^2 , dx ] Substituting in our previous answer: [ V = \pi \cdot 16 \left( 1 - \sqrt{3} \right) = 16\pi(1 - \sqrt{3}) ] This provides the exact volume of the solid of revolution.
Report Improved Results
Recommend to friends
Students Supported
Questions answered