Photo AI

The line l_1 has equation \[ r = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 8

Question icon

Question 7

The-line-l_1-has-equation--\[-r-=-\begin{pmatrix}-1-\\-0-\\--1-\end{pmatrix}-+-\lambda-\begin{pmatrix}-1-\\-0-\\-0-\end{pmatrix}-Edexcel-A-Level Maths Pure-Question 7-2007-Paper 8.png

The line l_1 has equation \[ r = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} . \] The line l_2 has equation \[ r... show full transcript

Worked Solution & Example Answer:The line l_1 has equation \[ r = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 8

Step 1

Show that l_1 and l_2 do not meet.

96%

114 rated

Answer

To determine if lines l_1 and l_2 intersect, we can equate their equations:

  1. From l_1: [ r_1 = \begin{pmatrix} 1 + \lambda \ 0 \ -1 \end{pmatrix} ]

  2. From l_2: [ r_2 = \begin{pmatrix} 3 + \mu \ 6 - \mu \ 2 - \mu \end{pmatrix} ]

Setting these equal gives us:

[ \begin{pmatrix} 1 + \lambda \ 0 \ -1 \end{pmatrix} = \begin{pmatrix} 3 + \mu \ 6 - \mu \ 2 - \mu \end{pmatrix} ]

This yields three equations:

  1. ( 1 + \lambda = 3 + \mu )
  2. ( 0 = 6 - \mu )
  3. ( -1 = 2 - \mu )

From the second equation, we find ( \mu = 6 ). Substituting ( \mu = 6 ) into the first equation gives:

[ \lambda = 3 + 6 - 1 = 8. ]

The third equation leads to:

[ -1 = 2 - 6 \Longrightarrow -1 = -4 ] (which is incorrect).

This demonstrates that those equations are inconsistent. Thus, l_1 and l_2 do not intersect.

Step 2

Find the cosine of the acute angle between AB and l_1.

99%

104 rated

Answer

The coordinates of point A on l_1 when ( \lambda = 1 ) are: [ A = \begin{pmatrix} 1 + 1 \ 0 \ -1 \end{pmatrix} = \begin{pmatrix} 2 \ 0 \ -1 \end{pmatrix}. ]

The coordinates of point B on l_2 when ( \mu = 2 ) are: [ B = \begin{pmatrix} 3 + 2 \ 6 - 2 \ 2 - 2 \end{pmatrix} = \begin{pmatrix} 5 \ 4 \ 0 \end{pmatrix}. ]

Next, we calculate the vector ( AB ): [ AB = B - A = \begin{pmatrix} 5 \ 4 \ 0 \end{pmatrix} - \begin{pmatrix} 2 \ 0 \ -1 \end{pmatrix} = \begin{pmatrix} 3 \ 4 \ 1 \end{pmatrix}. ]

The direction vector for l_1 is: [ d_{l_1} = \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}. ]

Using the dot product formula: [ \cos \theta = \frac{ AB \cdot d_{l_1}}{|AB| \cdot |d_{l_1}|} ]

Calculating the dot product: [ AB \cdot d_{l_1} = 3 \cdot 1 + 4 \cdot 0 + 1 \cdot 0 = 3. ]

The magnitudes are: [ |AB| = \sqrt{3^2 + 4^2 + 1^2} = \sqrt{26}, \quad |d_{l_1}| = 1. ]

Therefore: [ \cos \theta = \frac{3}{\sqrt{26}}. ]

Thus, the cosine of the acute angle between AB and l_1 is ( \frac{3}{\sqrt{26}} ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;