Photo AI
Question 8
With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations l_1 : r = \begin{pmatrix} 4 \ 28 \ -5 \end{pmatrix} + \lambda \begin{pmatrix} 4 \... show full transcript
Step 1
Answer
To find the intersection point X of the lines l_1 and l_2, we set the equations equal:
\begin{pmatrix} 4 \ 28 \ -5 \end{pmatrix} + \lambda \begin{pmatrix} 4 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 5 \ 3 \ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \ -4 \ -4 \end{pmatrix}
Equating components gives us three equations:
Thus, this is consistent, and substituting ( \lambda = \frac{1}{4} ) into l_1 gives: ( X = \begin{pmatrix} 4 + 4(\frac{1}{4}) \ 28 \ -5 \end{pmatrix} = \begin{pmatrix} 5 \ 28 \ -5 \end{pmatrix} )
Step 2
Answer
The direction vectors of the lines are:
( \mathbf{d_1} = \begin{pmatrix} 4 \ 0 \ 0 \end{pmatrix} ) for l_1 and ( \mathbf{d_2} = \begin{pmatrix} 0 \ -4 \ -4 \end{pmatrix} ) for l_2. The cosine of the angle ( \theta ) between two vectors can be calculated using the dot product:
[ \cos(\theta) = \frac{\mathbf{d_1} \cdot \mathbf{d_2}}{|\mathbf{d_1}| |\mathbf{d_2}|} ]
Calculating the dot product: [ \mathbf{d_1} \cdot \mathbf{d_2} = 4 \cdot 0 + 0 \cdot (-4) + 0 \cdot (-4) = 0 ]
The magnitudes are: [ |\mathbf{d_1}| = 4 \quad \text{and} \quad |\mathbf{d_2}| = \sqrt{0^2 + (-4)^2 + (-4)^2} = \sqrt{32} = 4\sqrt{2} ]
Thus: [ \cos(\theta) = \frac{0}{4 \cdot 4\sqrt{2}} = 0 ]
This implies that the angle ( \theta = 90^\circ ). Hence, the acute angle is ( 90.00^\circ ).
Step 3
Answer
The position of point A is given as ( \begin{pmatrix} 2 \ 18 \ 6 \end{pmatrix} ) and the coordinates of point X are ( \begin{pmatrix} 5 \ 28 \ -5 \end{pmatrix} ). The distance AX can be calculated using the formula:
[ AX = |X - A| = \sqrt{(5 - 2)^2 + (28 - 18)^2 + (-5 - 6)^2} = \sqrt{3^2 + 10^2 + (-11)^2} ]
Calculating this gives: [ AX = \sqrt{9 + 100 + 121} = \sqrt{230} ]
Step 4
Answer
The direction vector of line l_1 is perpendicular to ( \overrightarrow{YA} ). If point Y is on line l_2, we can express it generally as ( Y = \begin{pmatrix} 5 \ 3 - 4t \ 1 - 4t \end{pmatrix} ). The distance YA is then:
[ YA = |Y - A| = \sqrt{(3 - 2)^2 + ((3 - 4t) - 18)^2 + ((1 - 4t) - 6)^2} = \sqrt{1 + (3 - 4t - 18)^2 + (1 - 4t - 6)^2} ]
Solving for t will yield the distance, which needs to be evaluated to one decimal place.
Step 5
Answer
The position of point B on l_1 can be expressed as:
( B = A + k \begin{pmatrix} 4 \ 28 \ -5 \end{pmatrix} ) for some scalar k. The condition |\overrightarrow{AX}| = 2 |\overrightarrow{AB}| implies: [ |X - A| = 2|B - A|]
Resolving this and applying the derived conditions will provide two different position vectors for B.
Report Improved Results
Recommend to friends
Students Supported
Questions answered