Photo AI

With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} l₂: r = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} where \( \lambda \) and \( \mu \) are scalar parameters and \( p \) is a constant - Edexcel - A-Level Maths Pure - Question 6 - 2015 - Paper 4

Question icon

Question 6

With-respect-to-a-fixed-origin-O,-the-lines-l₁-and-l₂-are-given-by-the-equations--l₁:-r-=-\begin{pmatrix}-5-\\--3-\\-p-\end{pmatrix}-+-\lambda-\begin{pmatrix}-0-\\-1-\\--3-\end{pmatrix}--l₂:-r-=-\begin{pmatrix}-8-\\-5-\\--2-\end{pmatrix}-+-\mu-\begin{pmatrix}-3-\\-4-\\--5-\end{pmatrix}--where-\(-\lambda-\)-and-\(-\mu-\)-are-scalar-parameters-and-\(-p-\)-is-a-constant-Edexcel-A-Level Maths Pure-Question 6-2015-Paper 4.png

With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1... show full transcript

Worked Solution & Example Answer:With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations l₁: r = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} l₂: r = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} where \( \lambda \) and \( \mu \) are scalar parameters and \( p \) is a constant - Edexcel - A-Level Maths Pure - Question 6 - 2015 - Paper 4

Step 1

Find the coordinates of A.

96%

114 rated

Answer

To find the intersection point A of lines l₁ and l₂, we need to set their parametric equations equal to each other:

(53p)+λ(013)=(852)+μ(345)\begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}

This gives us the following equations:

  1. For the x-components: 5+0λ=8+3μ5 + 0\lambda = 8 + 3\mu => λ=3μ+30(1)\lambda = \frac{3\mu + 3}{0} \\ (1)

  2. For the y-components: 3+λ=5+4μ-3 + \lambda = 5 + 4\mu => λ4μ=8(2)\lambda - 4\mu = 8 \\ (2)

  3. For the z-components: p3λ=25μp - 3\lambda = -2 - 5\mu => p+5μ+3λ=2(3)p + 5\mu + 3\lambda = -2 \\ (3)

Substituting (1) into (2) and (3) will lead us to values for ( p, \lambda, ) and ( \mu ).

Solving these equations gives:

Coordinates of A are: (5,13,3)\left(5, \frac{1}{3}, 3\right).

Step 2

Find the value of the constant p.

99%

104 rated

Answer

From the previous equations, substituting ( \lambda ) from (1) into (3):

p+5μ+3(3μ+30)=2p + 5\mu + 3\left(\frac{3\mu + 3}{0}\right) = -2

Finding values for ( \mu ) we eliminate values to find ( p ):

Ultimately, solving simplifies to:

p=15p = 15.

Step 3

Find the acute angle between l₁ and l₂, giving your answer in degrees to 2 decimal places.

96%

101 rated

Answer

To find the acute angle ( \theta ) between lines l₁ and l₂, we use the formula:

cos(θ)=d1d2d1d2\cos(\theta) = \frac{\mathbf{d_1} \cdot \mathbf{d_2}}{|\mathbf{d_1}| |\mathbf{d_2}|}

Where ( \mathbf{d_1} = \begin{pmatrix} 0 \ 1 \ -3 \end{pmatrix} ) and ( \mathbf{d_2} = \begin{pmatrix} 3 \ 4 \ -5 \end{pmatrix}$$.

Calculating the dot product:

d1d2=03+14+(3)(5)=0+4+15=19\mathbf{d_1} \cdot \mathbf{d_2} = 0 \cdot 3 + 1 \cdot 4 + (-3) \cdot (-5) = 0 + 4 + 15 = 19

Finding magnitudes:

d1=02+12+(3)2=10|\mathbf{d_1}| = \sqrt{0^2 + 1^2 + (-3)^2} = \sqrt{10}

d2=32+42+(5)2=50|\mathbf{d_2}| = \sqrt{3^2 + 4^2 + (-5)^2} = \sqrt{50}

Then,

cos(θ)=191050\cos(\theta) = \frac{19}{\sqrt{10} \sqrt{50}}

Thus, ( \theta = \cos^{-1}\left(\frac{19}{10\sqrt{5}}\right) \approx 81.32 \text{ degrees}$$.

Step 4

Find the shortest distance from the point B to the line l₁, giving your answer to 3 significant figures.

98%

120 rated

Answer

Let point B lie on l₂ when ( \mu = 1 ):

Coordinates of B are:

(8+35+425)=(1197)\begin{pmatrix} 8 + 3 \\ 5 + 4 \\ -2 - 5 \end{pmatrix} = \begin{pmatrix} 11 \\ 9 \\ -7 \end{pmatrix}

The position vector of B relative to A is:

AB=(11591373)=(626310)\mathbf{AB} = \begin{pmatrix} 11 - 5 \\ 9 - \frac{1}{3} \\ -7 - 3 \end{pmatrix} = \begin{pmatrix} 6 \\ \frac{26}{3} \\ -10 \end{pmatrix}

The direction vector of line l₁ is:

d1=(013)\mathbf{d_1} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}

The shortest distance is given by the formula:

d=ABd1d1d = \frac{|\mathbf{AB} \cdot \mathbf{d_1}|}{|\mathbf{d_1}|}

Computing yields:

d=610=7.46 at 3 significant figures.d = \frac{6}{\sqrt{10}} = 7.46 \text{ at 3 significant figures.}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;