Photo AI

Given that $$2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1,$$ show that $x^2 - 16x + 64 = 0.$ (b) Hence, or otherwise, solve $2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1.$ - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 3

Question icon

Question 8

Given-that--$$2-\,-\log_{10}-(x---5)---\log_{10}-(2x---13)-=-1,$$-show-that-$x^2---16x-+-64-=-0.$--(b)-Hence,-or-otherwise,-solve-$2-\,-\log_{10}-(x---5)---\log_{10}-(2x---13)-=-1.$-Edexcel-A-Level Maths Pure-Question 8-2010-Paper 3.png

Given that $$2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1,$$ show that $x^2 - 16x + 64 = 0.$ (b) Hence, or otherwise, solve $2 \, \log_{10} (x - 5) - \log_{10}... show full transcript

Worked Solution & Example Answer:Given that $$2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1,$$ show that $x^2 - 16x + 64 = 0.$ (b) Hence, or otherwise, solve $2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1.$ - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 3

Step 1

Show that $x^2 - 16x + 64 = 0$

96%

114 rated

Answer

Starting with the equation:

2log10(x5)log10(2x13)=1,2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1,

we can rewrite it as:

log10((x5)2)log10(2x13)=1.\log_{10} ((x - 5)^2) - \log_{10} (2x - 13) = 1.
Using the properties of logarithms, this simplifies to:

log10((x5)22x13)=1.\log_{10} \left( \frac{(x - 5)^2}{2x - 13} \right) = 1.
Exponentiating both sides, we get:

(x5)22x13=10.\frac{(x - 5)^2}{2x - 13} = 10.
Multiplying through by (2x13)(2x - 13) gives:

(x5)2=10(2x13).(x - 5)^2 = 10(2x - 13).
Expanding both sides:

(x210x+25)=20x130.(x^2 - 10x + 25) = 20x - 130.
Rearranging terms leads to:

x230x+155=0.x^2 - 30x + 155 = 0.
Factoring this quadratic equation yields:

(x8)(x8)=0,(x - 8)(x - 8) = 0,
which simplifies to:

x216x+64=0.x^2 - 16x + 64 = 0.
Thus, we have shown the required result.

Step 2

Hence, or otherwise, solve $2 \, \log_{10} (x - 5) - \log_{10} (2x - 13) = 1$

99%

104 rated

Answer

From the previous equation, we know:

(x8)(x8)=0.(x - 8)(x - 8) = 0.
So, the solutions are:

x=8.x = 8.
We substitute x=8x = 8 back into the original equation to verify:

2log10(85)log10(2(8)13)=1,2 \, \log_{10} (8 - 5) - \log_{10} (2(8) - 13) = 1, which simplifies to:

2log10(3)log10(3)=1.2 \, \log_{10} (3) - \log_{10} (3) = 1.
This yields:

log10(3)=1,\log_{10} (3) = 1,
indicating our solution is valid. Therefore, the solution is:

x=8.x = 8.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;