Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 an t$, $y = 5 rac{ oot{3}}{2} ext{sin} 2t$, $0 leq t leq rac{ ext{π}}{2}$ - Edexcel - A-Level Maths Pure - Question 7 - 2016 - Paper 4

Question icon

Question 7

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-4--an-t$,---$y-=-5--rac{-oot{3}}{2}--ext{sin}-2t$,---$0--leq-t--leq--rac{-ext{π}}{2}$-Edexcel-A-Level Maths Pure-Question 7-2016-Paper 4.png

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 an t$, $y = 5 rac{ oot{3}}{2} ext{sin} 2t$, $0 leq t leq rac{ ext{π}}{2}$. The po... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = 4 an t$, $y = 5 rac{ oot{3}}{2} ext{sin} 2t$, $0 leq t leq rac{ ext{π}}{2}$ - Edexcel - A-Level Maths Pure - Question 7 - 2016 - Paper 4

Step 1

Find the exact value of $ rac{dy}{dx}$ at the point P.

96%

114 rated

Answer

To find rac{dy}{dx}, we will use the parametric equations given. First, we find rac{dy}{dt} and rac{dx}{dt}:

  1. Differentiate the equations with respect to tt:
    • For x=4antx = 4 an t, we have:
    • For y = 5 rac{ oot{3}}{2} ext{sin} 2t, we use the chain rule:

oot{3}}{2} imes 2 ext{cos} 2t = 5 oot{3} ext{cos} 2t$$

  1. Then, we can find rac{dy}{dx} using the formula:

oot{3} ext{cos} 2t}{4 ext{sec}^2 t} = rac{5 oot{3}}{4} rac{ ext{cos} 2t}{ ext{cos}^2 t}$$

  1. Next, we need to evaluate this at the given point P. Calculate tt for point P:
    • Given the coordinates of point P, we can find tt by solving x = 4 an t = 4 rac{ oot{3}}{3}, leading to:

oot{3}}{3} ightarrow t = rac{ ext{π}}{6}$$

  1. Substitute tt back into the expression for rac{dy}{dx}:

oot{3}}{4} rac{ ext{cos}( rac{ ext{π}}{3})}{ ext{cos}^2( rac{ ext{π}}{6})} = rac{5 oot{3}}{4} rac{ rac{1}{2}}{ rac{3}{4}} = rac{5 oot{3}}{4} imes rac{2}{3} = rac{10 oot{3}}{12} = rac{5 oot{3}}{6}$$

Step 2

Find the exact coordinates of the point Q.

99%

104 rated

Answer

To find the coordinates of the point Q where rac{dy}{dx} = 0, we first recall that:

oot{3}}{2} imes 2 ext{cos} 2t$$ Setting $ rac{dy}{dt} = 0$ gives: $$ ext{cos} 2t = 0$$ This happens when: $$2t = rac{ ext{π}}{2} + n ext{π}, ext{ for } n ext{ integer}$$ This gives: $$t = rac{ ext{π}}{4}, rac{3 ext{π}}{4}$$ For $t = rac{ ext{π}}{4}$, substitute $t$ into the equations for $x$ and $y$: 1. For $x$: $$x = 4 an rac{ ext{π}}{4} = 4 imes 1 = 4$$ 2. For $y$: $$y = 5 rac{ oot{3}}{2} ext{sin} 2( rac{ ext{π}}{4}) = 5 rac{ oot{3}}{2} imes 1 = rac{5 oot{3}}{2}$$ Thus, the coordinates of point Q are: $$(4, rac{5 oot{3}}{2})$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;