Photo AI

3. (a) Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 6

Question icon

Question 6

3.-(a)-Express-\(-\frac{5}{(x-1)(3x+2)}-\)-in-partial-fractions-Edexcel-A-Level Maths Pure-Question 6-2011-Paper 6.png

3. (a) Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions. (b) Hence find \( \int \frac{5}{(x-1)(3x+2)} \, dx \), where \( x > 1 \). (c) Find the particular ... show full transcript

Worked Solution & Example Answer:3. (a) Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 6

Step 1

Express \( \frac{5}{(x-1)(3x+2)} \) in partial fractions.

96%

114 rated

Answer

To express ( \frac{5}{(x-1)(3x+2)} ) in partial fractions, we assume it can be represented as:

[ \frac{A}{x-1} + \frac{B}{3x+2} ]

Multiplying through by the denominator ((x-1)(3x+2)", we get:

[ 5 = A(3x+2) + B(x-1) ]

Expanding this, we obtain:

[ 5 = (3A + B)x + (2A - B) ]

Setting up the equations from the coefficients:

  1. ( 3A + B = 5 )
  2. ( 2A - B = 0 )

Solving these equations: From (2), we find ( B = 2A ). Substituting into (1):

[ 3A + 2A = 5 \Rightarrow 5A = 5 \Rightarrow A = 1 ]

Then substituting ( A ) back to find ( B ):

[ B = 2(1) = 2 ]

Thus, the partial fraction decomposition is:

[ \frac{5}{(x-1)(3x+2)} = \frac{1}{x-1} + \frac{2}{3x+2} ]

Step 2

Hence find \( \int \frac{5}{(x-1)(3x+2)} \, dx \), where \( x > 1 \).

99%

104 rated

Answer

Using the partial fraction result:

[ \int \frac{5}{(x-1)(3x+2)} , dx = \int \left( \frac{1}{x-1} + \frac{2}{3x+2} \right) , dx ]

We can split this into two separate integrals:

[ = \int \frac{1}{x-1} , dx + 2 \int \frac{1}{3x+2} , dx ]

Calculating these integrals:

  1. ( \int \frac{1}{x-1} , dx = \ln |x-1| + C_1 ),
  2. For the second integral, let ( u = 3x+2 ) then ( dx = \frac{1}{3} du ):

[ \int \frac{1}{3x+2} , dx = \frac{1}{3} \ln |3x+2| + C_2 ]

Therefore, combining both results:

[ \int \frac{5}{(x-1)(3x+2)} , dx = \ln |x-1| + \frac{2}{3} \ln |3x+2| + C ]

Step 3

Find the particular solution of the differential equation \( (x-1)(3x+2) \frac{dy}{dx} = 5y, \quad x > 1, \)

96%

101 rated

Answer

To find the particular solution, we rewrite the equation:

[ \frac{dy}{dx} = \frac{5y}{(x-1)(3x+2)} ]

This can be solved using separation of variables:

[ \frac{dy}{y} = \frac{5}{(x-1)(3x+2)} , dx ]

Integrating both sides:

[ \int \frac{dy}{y} = 5 \int \frac{1}{(x-1)(3x+2)} , dx ]

We already found the integral of the right side in part (b):

[ \ln |y| = \ln |x-1| + \frac{2}{3} \ln |3x+2| + C ]

Taking exponentials gives us:

[ y = K |x-1| (3x+2)^{\frac{2}{3}} ]

Using the condition ( y = 8 ) when ( x = 2 ):

[ 8 = K |2-1| (3(2)+2)^{\frac{2}{3}} = K \cdot 1 , (8)^{\frac{2}{3}} ]

Thus:

[ K = \frac{8}{4} = 2 ]

Finally, the particular solution is:

[ y = 2 |x-1| (3x+2)^{\frac{2}{3}} ]

In the specified form, we can express it as:

[ y = 2 (x-1) (3x+2)^{\frac{2}{3}} \text{ for } x > 1 ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;